IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015409.html
   My bibliography  Save this article

An ML-based wind turbine blade design method considering multi-objective aerodynamic similarity and its experimental validation

Author

Listed:
  • Yang, Siyao
  • Lin, Kun
  • Zhou, Annan

Abstract

Model test is an essential technique to study the aerodynamic performance of wind turbines. To overcome the poor aerodynamic performance of scaled models caused by the scaling effect, this study proposes an innovative blade design method for scaled model testing based on machine learning (ML). The method achieves satisfactory similarity between the thrust and power coefficients under multiple operating conditions of the model and prototype. Furthermore, a case study of the NREL 5-MW wind turbine is carried out with wind tunnel tests to validate the effectiveness of the proposed method. Obtained results suggest that the aerodynamic performance of redesigned blade closely mirrors that of the prototype under multiple operating conditions, reaching 97.59 % (thrust) and 97.87 % (power) coefficients of the prototype at the rated operating condition, respectively. With this technique, aerodynamic performance similarities between the redesigned blade and the prototype can be enhanced, contributing to more accurate scale model testing.

Suggested Citation

  • Yang, Siyao & Lin, Kun & Zhou, Annan, 2024. "An ML-based wind turbine blade design method considering multi-objective aerodynamic similarity and its experimental validation," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015409
    DOI: 10.1016/j.renene.2023.119625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passon, Patrik, 2015. "Damage equivalent wind–wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines," Renewable Energy, Elsevier, vol. 81(C), pages 723-736.
    2. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    3. Chen, Chaohe & Ma, Yuan & Fan, Tianhui, 2022. "Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
    5. Lin, Kun & Xiao, Shaohui & Zhou, Annan & Liu, Hongjun, 2020. "Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel," Renewable Energy, Elsevier, vol. 159(C), pages 1199-1214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlton, T.S. & Rouainia, M., 2022. "Geotechnical fragility analysis of monopile foundations for offshore wind turbines in extreme storms," Renewable Energy, Elsevier, vol. 182(C), pages 1126-1140.
    2. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    4. Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).
    5. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    6. Gee-Nam Lee & Duc-Vu Ngo & Sang-Il Lee & Dong-Hyawn Kim, 2023. "Fatigue Life Convergence of Offshore Wind Turbine Support Structure According to Wind Measurement Period," Energies, MDPI, vol. 16(7), pages 1-14, April.
    7. Jiang, Yingying & Cheng, Zhengshun & Chen, Peng & Chai, Wei & Xiao, Longfei, 2023. "Performance-scaled rotor design method for model testing of floating vertical axis wind turbines in wave basins," Renewable Energy, Elsevier, vol. 219(P1).
    8. Chen, Zheng & Sun, Jili & Yang, Jingqing & Sun, Yong & Chen, Qian & Zhao, Hongyang & Qian, Peng & Si, Yulin & Zhang, Dahai, 2024. "Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system," Renewable Energy, Elsevier, vol. 226(C).
    9. Ju, Shen-Haw & Su, Feng-Chien & Ke, Yi-Pei & Xie, Min-Hsuan, 2019. "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme," Renewable Energy, Elsevier, vol. 136(C), pages 69-78.
    10. Wang, Tengyuan & Cai, Chang & Liu, Junbo & Peng, Chaoyi & Wang, Yibo & Sun, Xiangyu & Zhong, Xiaohui & Zhang, Jingjing & Li, Qingan, 2024. "Wake characteristics and vortex structure evolution of floating offshore wind turbine under surge motion," Energy, Elsevier, vol. 302(C).
    11. Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
    12. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    13. Chen, Peng & Kang, Yirou & Xu, Shijie & Liu, Lei & Cheng, Zhengshun, 2024. "Numerical modeling and dynamic response analysis of an integrated semi-submersible floating wind and aquaculture system," Renewable Energy, Elsevier, vol. 225(C).
    14. Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
    15. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    17. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.