IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp1126-1140.html
   My bibliography  Save this article

Geotechnical fragility analysis of monopile foundations for offshore wind turbines in extreme storms

Author

Listed:
  • Charlton, T.S.
  • Rouainia, M.

Abstract

Offshore wind turbines (OWTs) must withstand harsh environmental loads over their 20- to 30-year design life. Fragility analysis investigates the probability of damage over a range of hazard intensities and is integral to a performance-based engineering approach. The focus of this paper is on monopiles, which are widely used to support OWTs in water depths up to around 40m. The paper presents a fragility analysis of monopiles in extreme storms in terms of geotechnical performance, measured by permanent rotation of the foundation. Geotechnical fragility has so far not been comprehensively addressed due to the challenge of predicting soil behaviour under cyclic loading and estimating the probability of extreme responses. On the latter, the paper develops efficient Karhunen-Loeve representations of wind and wave loading that can be combined with inexpensive probabilistic methods to compute fragility. The framework was demonstrated using a representative scenario of a 5 MW OWT installed in clay. Non-linear foundation response was captured by a dynamic 3D finite element model. Fragility curves were generated using subset simulation for storms with return periods (RPs) from 1 to 100 years. Fragility during extreme storms (with 50- and 100-year RPs) was significantly higher than storms with RPs of 10 years or less.

Suggested Citation

  • Charlton, T.S. & Rouainia, M., 2022. "Geotechnical fragility analysis of monopile foundations for offshore wind turbines in extreme storms," Renewable Energy, Elsevier, vol. 182(C), pages 1126-1140.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:1126-1140
    DOI: 10.1016/j.renene.2021.10.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taflanidis, Alexandros A. & Loukogeorgaki, Eva & Angelides, Demos C., 2013. "Offshore wind turbine risk quantification/evaluation under extreme environmental conditions," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 19-32.
    2. Carswell, W. & Arwade, S.R. & DeGroot, D.J. & Myers, A.T., 2016. "Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay," Renewable Energy, Elsevier, vol. 97(C), pages 319-330.
    3. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    4. Wilkie, David & Galasso, Carmine, 2020. "A probabilistic framework for offshore wind turbine loss assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 1772-1783.
    5. Lin, Kun & Xiao, Shaohui & Zhou, Annan & Liu, Hongjun, 2020. "Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel," Renewable Energy, Elsevier, vol. 159(C), pages 1199-1214.
    6. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    7. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.
    8. Hallowell, Spencer T. & Myers, Andrew T. & Arwade, Sanjay R. & Pang, Weichiang & Rawal, Prashant & Hines, Eric M. & Hajjar, Jerome F. & Qiao, Chi & Valamanesh, Vahid & Wei, Kai & Carswell, Wystan & Fo, 2018. "Hurricane risk assessment of offshore wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 234-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dayong & Zhao, Jipeng & Wu, Yuqi & Zhang, Yukun & Liang, Hao, 2024. "An innovative bionic offshore wind foundation: Scaled suction caisson," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    3. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    4. He, Kunpeng & Ye, Jianhong, 2023. "Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way," Renewable Energy, Elsevier, vol. 202(C), pages 453-469.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    2. Atul Patil & Chaitanya Pathak & Bejoy Alduse, 2023. "Review of Natural Hazard Risks for Wind Farms," Energies, MDPI, vol. 16(3), pages 1-29, January.
    3. Yang, Siyao & Lin, Kun & Zhou, Annan, 2024. "An ML-based wind turbine blade design method considering multi-objective aerodynamic similarity and its experimental validation," Renewable Energy, Elsevier, vol. 220(C).
    4. Hashemi, M.Reza & Kresning, Boma & Hashemi, Javad & Ginis, Isaac, 2021. "Assessment of hurricane generated loads on offshore wind farms; a closer look at most extreme historical hurricanes in New England," Renewable Energy, Elsevier, vol. 175(C), pages 593-609.
    5. Escobar, A. & Negro, V. & López-Gutiérrez, J.S. & Esteban, M.D., 2019. "Assessment of the influence of the acceleration field on scour phenomenon in offshore wind farms," Renewable Energy, Elsevier, vol. 136(C), pages 1036-1043.
    6. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    7. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    8. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    9. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    10. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    11. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    13. Hu, Xiaonong & Fang, Genshen & Yang, Jiayu & Zhao, Lin & Ge, Yaojun, 2023. "Simplified models for uncertainty quantification of extreme events using Monte Carlo technique," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Wilkie, David & Galasso, Carmine, 2020. "Impact of climate-change scenarios on offshore wind turbine structural performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
    16. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    17. Maheri, Alireza, 2014. "A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 159-174.
    18. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    19. Mo, Huadong & Sansavini, Giovanni, 2019. "Impact of aging and performance degradation on the operational costs of distributed generation systems," Renewable Energy, Elsevier, vol. 143(C), pages 426-439.
    20. Hong, H.P., 2013. "Selection of regressand for fitting the extreme value distributions using the ordinary, weighted and generalized least-squares methods," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 71-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:1126-1140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.