IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124015933.html
   My bibliography  Save this article

Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition

Author

Listed:
  • Liang, Jun
  • Fu, Yuhao
  • Wang, Ying
  • Ou, Jinping

Abstract

Wind and wave loads are critical to monopile-supported offshore wind turbines (OWTs) in determining whether OWTs are in safe conditions to generate electricity. However, these random and complex loads vary with time and location, and are difficult to measure directly. Theoretically, the loads can be identified based on structural responses. Nevertheless, it is challenging due to the complexity of external loads and the existence of harmonic loads generated by rotor rotation. This study proposes a new load identification framework using a limited amount of monitoring data to estimate the equivalent wind and wave loads of OWTs simultaneously. Both loads are modeled as Gaussian processes with exponential covariance function and incorporated into the augmented state-space model. Kalman filter is employed to identify the equivalent loads. The effectiveness and accuracy of the proposed method were validated based on a numerical OWT model and a scaled OWT test model. The results demonstrate that the framework can successfully identify equivalent wind and wave loads of OWTs in both parked and operating conditions. The probability distribution of identified load data is consistent with actual load data, with an error of less than 9.1 %. The proposed framework can find vast applications in operational management for OWTs.

Suggested Citation

  • Liang, Jun & Fu, Yuhao & Wang, Ying & Ou, Jinping, 2024. "Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015933
    DOI: 10.1016/j.renene.2024.121525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezaei, Mohammad M. & Behzad, Mehdi & Haddadpour, Hassan & Moradi, Hamed, 2015. "Development of a reduced order model for nonlinear analysis of the wind turbine blade dynamics," Renewable Energy, Elsevier, vol. 76(C), pages 264-282.
    2. Chen, Lingte & Yang, Jin & Lou, Chengwei, 2024. "Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model," Renewable Energy, Elsevier, vol. 221(C).
    3. Ko, Yung-Yen, 2020. "A simplified structural model for monopile-supported offshore wind turbines with tapered towers," Renewable Energy, Elsevier, vol. 156(C), pages 777-790.
    4. Zhao, Xiang & Dao, My Ha & Le, Quang Tuyen, 2023. "Digital twining of an offshore wind turbine on a monopile using reduced-order modelling approach," Renewable Energy, Elsevier, vol. 206(C), pages 531-551.
    5. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    6. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    7. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
    8. Moynihan, Bridget & Mehrjoo, Azin & Moaveni, Babak & McAdam, Ross & Rüdinger, Finn & Hines, Eric, 2023. "System identification and finite element model updating of a 6 MW offshore wind turbine using vibrational response measurements," Renewable Energy, Elsevier, vol. 219(P1).
    9. Haselsteiner, Andreas F. & Thoben, Klaus-Dieter, 2020. "Predicting wave heights for marine design by prioritizing extreme events in a global model," Renewable Energy, Elsevier, vol. 156(C), pages 1146-1157.
    10. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.
    11. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    12. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    2. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Study of the Bearing Capacity of Stiffened Tall Offshore Wind Turbine Towers during the Erection Phase," Energies, MDPI, vol. 13(19), pages 1-19, October.
    3. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    4. Charlton, T.S. & Rouainia, M., 2022. "Geotechnical fragility analysis of monopile foundations for offshore wind turbines in extreme storms," Renewable Energy, Elsevier, vol. 182(C), pages 1126-1140.
    5. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    6. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    7. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    8. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    9. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    12. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
    13. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    14. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    15. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    16. Li, Tenghui & Yang, Jin & Ioannou, Anastasia, 2024. "Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning," Renewable Energy, Elsevier, vol. 234(C).
    17. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    18. Mingyu Li & Dongxiao Niu & Zhengsen Ji & Xiwen Cui & Lijie Sun, 2021. "Forecast Research on Multidimensional Influencing Factors of Global Offshore Wind Power Investment Based on Random Forest and Elastic Net," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    19. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
    20. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.