IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6538-d398314.html
   My bibliography  Save this article

A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater

Author

Listed:
  • Enas Taha Sayed

    (Center for Advanced Materials Research, University of Sharjah, Sharjah 27272, UAE
    Chemical Engineering Department, Faculty of Engineering, Minia University, Al Minya 61111, Egypt)

  • Hussain Alawadhi

    (Center for Advanced Materials Research, University of Sharjah, Sharjah 27272, UAE
    Department of Applied Physics and Astronomy, University of Sharjah, PO Box, Sharjah 27272, UAE)

  • Khaled Elsaid

    (Chemical Engineering Program, Texas A&M University, College Station, TX 77843-3122, USA)

  • A. G. Olabi

    (Center for Advanced Materials Research, University of Sharjah, Sharjah 27272, UAE
    Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE
    Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7DA, UK)

  • Maryam Adel Almakrani

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

  • Shaikha Tamim Bin Tamim

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

  • Ghada H. M. Alafranji

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

  • Mohammad Ali Abdelkareem

    (Center for Advanced Materials Research, University of Sharjah, Sharjah 27272, UAE
    Chemical Engineering Department, Faculty of Engineering, Minia University, Al Minya 61111, Egypt
    Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

Abstract

Microbial fuel cell (MFC) is an emerging method for extracting energy from wastewater. The power generated from such systems is low due to the sluggish electron transfer from the inside of the biocatalyst to the anode surface. One strategy for enhancing the electron transfer rate is anode modification. In this study, iron nanostructure was synthesized on a carbon cloth (CC) via a simple electroplating technique, and later investigated as a bio-anode in an MFC operated with real wastewater. The performance of an MFC with a nano-layer of iron was compared to that using bare CC. The results demonstrated that the open-circuit voltage increased from 600 mV in the case of bare CC to 800 mV in the case of the iron modified CC, showing a 33% increase in OCV. This increase in OCV can be credited to the decrease in the anode potential from 0.16 V vs. Ag/AgCl in the case of bare CC, to −0.01 V vs. Ag/AgCl in the case of the modified CC. The power output in the case of the modified electrode was 80 mW/m 2 —two times that of the MFC using the bare CC. Furthermore, the steady-state current in the case of the iron modified carbon cloth was two times that of the bare CC electrode. The improved performance was correlated to the enhanced electron transfer between the microorganisms and the iron-plated surface, along with the increase of the anode surface- as confirmed from the electrochemical impedance spectroscopy and the surface morphology, respectively.

Suggested Citation

  • Enas Taha Sayed & Hussain Alawadhi & Khaled Elsaid & A. G. Olabi & Maryam Adel Almakrani & Shaikha Tamim Bin Tamim & Ghada H. M. Alafranji & Mohammad Ali Abdelkareem, 2020. "A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6538-:d:398314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hidalgo, Diana & Tommasi, Tonia & Bocchini, Sergio & Chiolerio, Alessandro & Chiodoni, Angelica & Mazzarino, Italo & Ruggeri, Bernardo, 2016. "Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells," Energy, Elsevier, vol. 99(C), pages 193-201.
    2. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    3. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Hendrik Marx & Silvia Forin & Matthias Finkbeiner, 2020. "Organizational Life Cycle Assessment of a Service Providing SME for Renewable Energy Projects (PV and Wind) in the United Kingdom," Sustainability, MDPI, vol. 12(11), pages 1-21, June.
    5. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    6. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    7. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    8. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    9. Hindatu, Y. & Annuar, M.S.M. & Gumel, A.M., 2017. "Mini-review: Anode modification for improved performance of microbial fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 236-248.
    10. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    11. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    12. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    2. Dawid Nosek & Tomasz Mikołajczyk & Agnieszka Cydzik-Kwiatkowska, 2023. "Anode Modification with Fe 2 O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    3. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Halima Alnaqbi & Oussama El-Kadri & Mohammad Ali Abdelkareem & Sameer Al-Asheh, 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-25, November.
    5. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    6. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    7. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    8. Hegazy Rezk & Abdul Ghani Olabi & Enas Taha Sayed & Samah Ibrahim Alshathri & Mohammad Ali Abdelkareem, 2023. "Optimized Artificial Intelligent Model to Boost the Efficiency of Saline Wastewater Treatment Based on Hunger Games Search Algorithm and ANFIS," Sustainability, MDPI, vol. 15(5), pages 1-16, March.
    9. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    10. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    11. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    12. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    2. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    3. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    5. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    6. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Hegazy Rezk & Ahmed Fathy, 2020. "Stochastic Fractal Search Optimization Algorithm Based Global MPPT for Triple-Junction Photovoltaic Solar System," Energies, MDPI, vol. 13(18), pages 1-28, September.
    8. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    10. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    11. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    12. Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
    13. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    14. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    15. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    16. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    17. Hegazy Rezk & Basem Alamri & Mokhtar Aly & Ahmed Fathy & Abdul G. Olabi & Mohammad Ali Abdelkareem & Hamdy A. Ziedan, 2021. "Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    18. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    19. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).
    20. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6538-:d:398314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.