IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011771.html
   My bibliography  Save this article

Study on thermal storage effectiveness of a novel PCM concrete applied in buildings located at four cities

Author

Listed:
  • Liu, Xinghai
  • Yang, Yingying
  • Sheng, Zhonghua
  • Wu, Weidong
  • Wang, Yuan
  • Dumoulin, Jean

Abstract

The implementation of phase change thermal storage technology represents a high-potential strategy for mitigating energy consumption and reducing heating and cooling loads in buildings. However, the practical thermal storage effectiveness is affected significantly by the outdoor thermal conditions specific to each location. This work studied the thermal behaviors of a novel composite concrete containing phase change material (PCM concrete) when inserted into building envelopes. Numerical simulations have been conducted to assess the full-year impact of this PCM concrete on buildings with multi-layer walls, considering four cities with different climates. Results indicate that this novel PCM concrete demonstrates maximum effectiveness in Paris, effectively reducing indoor temperature fluctuations in summer. Conversely, in the other three cities with high solar-air temperatures in summer, the PCM concrete remains melting, reducing its thermal storage effectiveness. Instead, it performs better thermal behaviors during spring and autumn. In summary, the new PCM concrete demonstrates a good capacity to regulate indoor temperature, however, this effectiveness is primarily impacted by the outdoor solar-air temperature. Therefore, to maximize the latent heat storage potential of PCM, it is crucial to select an appropriate PCM with optimal phase change temperature zones, particularly when this technology is implemented in diverse climatic zones.

Suggested Citation

  • Liu, Xinghai & Yang, Yingying & Sheng, Zhonghua & Wu, Weidong & Wang, Yuan & Dumoulin, Jean, 2023. "Study on thermal storage effectiveness of a novel PCM concrete applied in buildings located at four cities," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011771
    DOI: 10.1016/j.renene.2023.119262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    2. Liu, Zu-An & Hou, Jiawen & Chen, Yu & Liu, Zaiqiang & Zhang, Tao & Zeng, Qian & Dewancker, Bart Julien & Meng, Xi & Jiang, Guanzhao, 2023. "Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter," Renewable Energy, Elsevier, vol. 202(C), pages 721-735.
    3. He, Hongtao & Zhao, Pin & Yue, Qinyan & Gao, Baoyu & Yue, Dongting & Li, Qian, 2015. "A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation," Renewable Energy, Elsevier, vol. 76(C), pages 45-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Zhou, Dongyi & Jiang, Yaqing, 2021. "Preparation and thermal storage performance of phase change ceramsite sand and thermal storage light-weight concrete," Renewable Energy, Elsevier, vol. 175(C), pages 143-152.
    2. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    3. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    4. Fan, Man & Hu, Ming & Suo, Hanxiao & Kong, Xiangfei & Li, Han & Jia, Jie, 2024. "Preferred method and performance evaluation of heterogeneous composite phase change material (CPCM) wallboard in different seasons," Renewable Energy, Elsevier, vol. 220(C).
    5. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    6. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.
    7. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    8. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    9. Yi Zhang & Hongzhi Cui & Waiching Tang & Guochen Sang & Hong Wu, 2017. "Effect of Summer Ventilation on the Thermal Performance and Energy Efficiency of Buildings Utilizing Phase Change Materials," Energies, MDPI, vol. 10(8), pages 1-17, August.
    10. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Ndiaye, Khadim & Ginestet, Stéphane & Cyr, Martin, 2018. "Experimental evaluation of two low temperature energy storage prototypes based on innovative cementitious material," Applied Energy, Elsevier, vol. 217(C), pages 47-55.
    12. Wi, Seunghwan & Jeong, Su-Gwang & Chang, Seong Jin & Lee, Jongki & Kim, Sumin, 2017. "Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites," Applied Energy, Elsevier, vol. 205(C), pages 1548-1559.
    13. Patel, Bhaskar & Rathore, Pushpendra Kumar Singh & Gupta, Naveen Kumar & Sikarwar, Basant Singh & Sharma, R.K. & Kumar, Rajan & Pandey, A.K., 2023. "Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings," Renewable Energy, Elsevier, vol. 218(C).
    14. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    15. Sih Ying Kong & Xu Yang & Suvash Chandra Paul & Leong Sing Wong & Branko Šavija, 2019. "Thermal Response of Mortar Panels with Different Forms of Macro-Encapsulated Phase Change Materials: A Finite Element Study," Energies, MDPI, vol. 12(13), pages 1-15, July.
    16. Hongxia Zhou & Åke Fransson & Thomas Olofsson, 2021. "An Explicit Finite Element Method for Thermal Simulations of Buildings with Phase Change Materials," Energies, MDPI, vol. 14(19), pages 1-20, September.
    17. Qu, Yue & Chen, Jiayu & Liu, Lifang & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing, 2020. "Study on properties of phase change foam concrete block mixed with paraffin / fumed silica composite phase change material," Renewable Energy, Elsevier, vol. 150(C), pages 1127-1135.
    18. Haider, Muhammad Zeeshan & Jin, Xinghan & Hu, Jong Wan, 2023. "Development of nanomodified-cementitious composite using phase change material for energy saving applications," Applied Energy, Elsevier, vol. 340(C).
    19. Figueiredo, António & Vicente, Romeu & Lapa, José & Cardoso, Claudino & Rodrigues, Fernanda & Kämpf, Jérôme, 2017. "Indoor thermal comfort assessment using different constructive solutions incorporating PCM," Applied Energy, Elsevier, vol. 208(C), pages 1208-1221.
    20. Liu, Qinggong & Tao, Yao & Shi, Long & Huang, Yi & Peng, Yuanling & Wang, Yong & Tu, Jiyuan, 2023. "Experimental investigations on the thermal performance of a novel ground heat exchanger under the synergistic effects of shape-stabilized phase change material and nanofluid," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.