IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp790-803.html
   My bibliography  Save this article

Experimental study on thermal response of a PCM energy pile in unsaturated clay

Author

Listed:
  • Bao, Xiaohua
  • Qi, Xuedong
  • Cui, Hongzhi
  • Tang, Waiching
  • Chen, Xiangsheng

Abstract

Energy piles are a new renewable energy technology that is suitable for use as a heat exchanger in ground source heat pump systems. In this study, hollow steel balls macro-encapsulated phase change materials (PCMs) were used for the development of concrete pile, the resulting pile is referred to as the “PCM energy pile.” A laboratory-scale PCM energy pile in unsaturated clay was constructed, and the thermal responses of the pile and surrounding soil subjected to different thermal operation modes were examined and compared with those of a traditional concrete energy pile. The test results showed that the soil zone experiencing temperature changes around the PCM pile is approximately twice the pile diameter. The PCM energy pile showed less temperature change but a much higher heat transfer power than that of the traditional energy pile. However, the heat transfer power was significantly influenced by the operation modes, and a reasonable flow rate was required to optimize the efficiency of the PCM energy pile. Water content in the soil decreased gradually because of water seepage and evaporation. The test results proved that the proposed PCM energy pile was an effective solution for improving the heat exchange capacity and saving underground space resources.

Suggested Citation

  • Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:790-803
    DOI: 10.1016/j.renene.2021.12.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    2. Han, Chanjuan & Yu, Xiong (Bill), 2020. "Analyses of the thermo-hydro-mechanical responses of energy pile subjected to non-isothermal heat exchange condition," Renewable Energy, Elsevier, vol. 157(C), pages 150-163.
    3. Sani, Abubakar Kawuwa & Singh, Rao Martand, 2020. "Response of unsaturated soils to heating of geothermal energy pile," Renewable Energy, Elsevier, vol. 147(P2), pages 2618-2632.
    4. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    5. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    6. Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
    7. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    8. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    9. Han, Chanjuan & Yu, Xiong (Bill), 2018. "An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: Computational assisted feasibility analyses," Renewable Energy, Elsevier, vol. 123(C), pages 417-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    2. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    2. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    4. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    5. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    7. Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
    8. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.
    10. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
    11. Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
    12. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    13. Cui, Ping & Jia, Linrui & Zhou, Xinlei & Yang, Wenxiao & Zhang, Wenke, 2020. "Heat transfer analysis of energy piles with parallel U-Tubes," Renewable Energy, Elsevier, vol. 161(C), pages 1046-1058.
    14. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    15. Zhi Chen & Bo Wang & Lifei Zheng & Henglin Xiao & Jingquan Wang, 2021. "Research on Heat Exchange Law and Structural Design Optimization of Deep Buried Pipe Energy Piles," Energies, MDPI, vol. 14(20), pages 1-19, October.
    16. Nicholson, Sarah R. & Kober, Leya R. & Atefrad, Pedram & Mwesigye, Aggrey & Dworkin, Seth B., 2021. "The influence of geometry on the performance of a helical steel pile as a geo-exchange system," Renewable Energy, Elsevier, vol. 172(C), pages 714-727.
    17. Abubakar Kawuwa Sani & Rao Martand Singh, 2021. "Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading," Energies, MDPI, vol. 14(14), pages 1-28, July.
    18. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    19. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
    20. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:790-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.