IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2636-d246942.html
   My bibliography  Save this article

Thermal Response of Mortar Panels with Different Forms of Macro-Encapsulated Phase Change Materials: A Finite Element Study

Author

Listed:
  • Sih Ying Kong

    (School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia)

  • Xu Yang

    (Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia)

  • Suvash Chandra Paul

    (School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia)

  • Leong Sing Wong

    (Department of Civil Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Branko Šavija

    (Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN Delft, The Netherlands)

Abstract

This paper presents a numerical investigation of thermal response of mortar panels, incorporating macro-encapsulated paraffin in different forms. Two types of macro capsules were fabricated and tested in this study using an instrumented hot plate device. The experimental results show that macro encapsulated paraffin reduced the temperature and increased time lag in the mortar panels due to the latent heat capacity of paraffin. Finite element models adopting the effective heat capacity method to model phase change effects were able to capture the overall thermal response of panels incorporated with paraffin well. Then, a parametric study was conducted using the validated finite element (FE) modelling technique to investigate the effects of different forms of macro capsules, the quantity of paraffin and the position of macro capsules. It was found that the tube and sphere macro capsules showed similar thermal responses, while the plate shaped capsules may cause a non-uniform temperature distribution in mortar panels. The quantity and position of paraffin have significant effects on the thermal response of the mortal panels. A higher paraffin content results in a significantly longer temperature lag and a lower temperature during the phase transition of paraffin. Furthermore, placing the paraffin away from the heating face can cause a longer temperature lag on the other face, which is desirable for building façade applications.

Suggested Citation

  • Sih Ying Kong & Xu Yang & Suvash Chandra Paul & Leong Sing Wong & Branko Šavija, 2019. "Thermal Response of Mortar Panels with Different Forms of Macro-Encapsulated Phase Change Materials: A Finite Element Study," Energies, MDPI, vol. 12(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2636-:d:246942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    2. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    3. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    4. Alam, Tanvir E. & Dhau, Jaspreet S. & Goswami, D. Yogi & Stefanakos, Elias, 2015. "Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems," Applied Energy, Elsevier, vol. 154(C), pages 92-101.
    5. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    6. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    7. Wi, Seunghwan & Jeong, Su-Gwang & Chang, Seong Jin & Lee, Jongki & Kim, Sumin, 2017. "Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites," Applied Energy, Elsevier, vol. 205(C), pages 1548-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Yasiri, Qudama & Szabó, Márta, 2022. "Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study," Applied Energy, Elsevier, vol. 314(C).
    2. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    2. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra Kumar, 2020. "An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings," Renewable Energy, Elsevier, vol. 149(C), pages 1300-1313.
    4. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    6. Zhang, Yuan & Sun, Xiaoqin & Medina, Mario A., 2024. "Experimental assessment of concrete masonry units integrated with insulation and phase change material: A wall-pattern study," Energy, Elsevier, vol. 289(C).
    7. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    8. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    9. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    10. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    11. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    12. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    13. Haider, Muhammad Zeeshan & Jin, Xinghan & Hu, Jong Wan, 2023. "Development of nanomodified-cementitious composite using phase change material for energy saving applications," Applied Energy, Elsevier, vol. 340(C).
    14. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    15. Gao, Yuan & Zheng, Qiye & Jonsson, Jacob C. & Lubner, Sean & Curcija, Charlie & Fernandes, Luis & Kaur, Sumanjeet & Kohler, Christian, 2021. "Parametric study of solid-solid translucent phase change materials in building windows," Applied Energy, Elsevier, vol. 301(C).
    16. Wang, Mei & Liu, Peng & Liu, Lang & Geng, Mingli & Wang, Yu & Zhang, Zhefeng, 2022. "The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling," Renewable Energy, Elsevier, vol. 201(P1), pages 1026-1037.
    17. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    18. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
    19. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    20. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2636-:d:246942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.