IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000065.html
   My bibliography  Save this article

Energy, exergy, environment and techno-economic analysis of hybrid solar-biomass systems for space heating and hot water supply: Case study of a Hammam building

Author

Listed:
  • Krarouch, Mohamed
  • Allouhi, Amine
  • Hamdi, Hassan
  • Outzourhit, Abdelkader

Abstract

The main goal of this study is to assess the thermodynamic performance, environmental benefits and economic feasibility of using a new hybrid solar-biomass system (HSBS) for the production of domestic hot water at 60 °C and for the provision of space heating via an underfloor heating system in a Hammam building located in Marrakesh-Morocco. The HSBSs consists of small biomass pellet boilers in combination with three types of solar thermal systems (evacuated tube, flat plate and parabolic trough collectors). A TRNSYS simulation model of a biomass heating system was developed and validated against experimental data. Performance comparisons of the biomass system with various optimal HSBSs were then conducted, and their results evaluated in terms of energy, exergy, environmental, and economic perspectives. Comparisons between various collectors’ technology revealed that the optimum collector areas of 204 m2, 224 m2 and 300 m2 are responsible for the lowest Levelized Cost of Heat (LCOH) corresponding to about 0.0755 $/kWh, 0.0696 $/kWh and 0.0642 $/kWh when using PTC, FPC and ETC, respectively. Furthermore, the optimal HSBS with evacuated tube collectors is the most effective configuration with a solar fraction of 57 %, and a total life-cycle saving cost of 0.509 M$ for a total annual heat demand of 533 MWh. Moreover, the total energy and exergy efficiencies are calculated equal to 40 % and 3.9 %, respectively. The payback period is found to be around 4.9 years, the levelized cost of heat 0.0642 $/kWh, while the annual CO2 avoidance amounts to 656 tons.

Suggested Citation

  • Krarouch, Mohamed & Allouhi, Amine & Hamdi, Hassan & Outzourhit, Abdelkader, 2024. "Energy, exergy, environment and techno-economic analysis of hybrid solar-biomass systems for space heating and hot water supply: Case study of a Hammam building," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000065
    DOI: 10.1016/j.renene.2024.119941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zu-An & Hou, Jiawen & Chen, Yu & Liu, Zaiqiang & Zhang, Tao & Zeng, Qian & Dewancker, Bart Julien & Meng, Xi & Jiang, Guanzhao, 2023. "Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter," Renewable Energy, Elsevier, vol. 202(C), pages 721-735.
    2. Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
    3. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Kashani Lotfabadi, Alireza & Hajinezhad, Ahmad & Kasaeian, Alibakhsh & Moosavian, Seyed Farhan, 2022. "Energetic, economic, environmental and climatic analysis of a solar combisystem for different consumption usages with PSI method ranking," Renewable Energy, Elsevier, vol. 197(C), pages 178-196.
    5. Huang, Junpeng & Fan, Jianhua & Furbo, Simon & Chen, Daochuan & Dai, Yanjun & Kong, Weiqiang, 2019. "Economic analysis and optimization of combined solar district heating technologies and systems," Energy, Elsevier, vol. 186(C).
    6. Uddin, Md Muin & Ji, Jie & Wang, Chuyao & Zhang, Chengyan, 2023. "Building energy conservation potentials of semi-transparent CdTe integrated photovoltaic window systems in Bangladesh context," Renewable Energy, Elsevier, vol. 207(C), pages 512-530.
    7. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    8. Wang, Qiang & Zhang, Xiaoming & Zhang, Haotian & Ma, Yinghan & Zhao, Shiyu, 2022. "Optimization of solar-assisted GWHP system based on the Trnsys model in cold regions," Renewable Energy, Elsevier, vol. 196(C), pages 1406-1417.
    9. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    10. Zhang, Xinghui & Yang, Jiaojiao & Fan, Yi & Zhao, Xudong & Yan, Ruimiao & Zhao, Juan & Myers, Steve, 2020. "Experimental and analytic study of a hybrid solar/biomass rural heating system," Energy, Elsevier, vol. 190(C).
    11. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & bedakhanian, Ali & Keykhah, Sajjad & fard, Ghazaleh yeganeh & zadsar, Narjes & Aghajari, Mona & Lee, Moonyong, 2023. "Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS," Renewable Energy, Elsevier, vol. 208(C), pages 512-537.
    12. Huang, Junpeng & Fan, Jianhua & Furbo, Simon, 2019. "Feasibility study on solar district heating in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 53-64.
    13. Younness EL Fouih & Amine Allouhi & Jamil Abdelmajid & Tarik Kousksou & Youssef Mourad, 2020. "Post Energy Audit of Two Mosques as a Case Study of Intermittent Occupancy Buildings: Toward more Sustainable Mosques," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    14. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Mäki, Elina & Kannari, Lotta & Hannula, Ilkka & Shemeikka, Jari, 2021. "Decarbonization of a district heating system with a combination of solar heat and bioenergy: A techno-economic case study in the Northern European context," Renewable Energy, Elsevier, vol. 175(C), pages 1174-1199.
    3. Xiaolei Yuan & Mingya Zhu & Yumin Liang & Mehdi Shahrestani & Risto Kosonen, 2023. "Comparison of Short and Long-Term Energy Performance and Decarbonization Potentials between Cogeneration and GSHP Systems under MARKAL Scenarios," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    4. Chen, Heng & Xue, Kai & Wu, Yunyun & Xu, Gang & Jin, Xin & Liu, Wenyi, 2021. "Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system," Energy, Elsevier, vol. 214(C).
    5. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    6. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    7. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.
    8. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    10. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    11. Alicia Crespo & Cèsar Fernández & Alvaro de Gracia & Andrea Frazzica, 2022. "Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones," Energies, MDPI, vol. 15(15), pages 1-23, August.
    12. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    13. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    14. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Yao, Jian & Zheng, Sihang & Chen, Daochuan & Dai, Yanjun & Huang, Mingjun, 2021. "Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region," Energy, Elsevier, vol. 219(C).
    16. Zhao, Jinling & Lyu, Lianyi & Li, Xuexin, 2020. "Numerical analysis of the operation regulation in a solar heating system with seasonal water pool thermal storage," Renewable Energy, Elsevier, vol. 150(C), pages 1118-1126.
    17. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Fan, Yi & Zhao, Xudong & Li, Jing & Li, Guiqiang & Myers, Steve & Cheng, Yuanda & Badiei, Ali & Yu, Min & Golizadeh Akhlaghi, Yousef & Shittu, Samson & Ma, Xiaoli, 2020. "Economic and environmental analysis of a novel rural house heating and cooling system using a solar-assisted vapour injection heat pump," Applied Energy, Elsevier, vol. 275(C).
    19. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
    20. Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.