IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010236.html
   My bibliography  Save this article

Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system

Author

Listed:
  • Men, Yukui
  • Liang, Caihang
  • Hu, Jiali
  • Zhang, Rui
  • He, Zhipeng
  • Zeng, Si
  • Sun, Tiezhu
  • Chen, Bo

Abstract

Solar-driven hollow fibre membrane dehumidification systems are already being used for air dehumidification, as they have the advantage of saving energy and preventing dehumidification solution droplets from entering the process air. Mathematical models of the system were built, which were validated with experimental data. An analysis of energy, exergy, economic and environmental was accomplished. Effects of critical parameters, including the flow rate of air, solution, hot-water and cold-water, and the cold-water temperature on the system's energy and exergy under the design conditions, were investigated theoretically. Economic and environmental aspects of the system were compared with a traditional refrigeration dehumidification system. The energy analysis indicates that the system has a higher coefficient of performance and dehumidification capacity in July and August. The exergy analysis indicates that the exergy efficiency is lower in May, June and July. The economic analysis shows the initial investment in the system is 641.65 $ higher than the traditional refrigeration dehumidification system, and the higher portion would be paid back with electricity savings in 6.08 years. The annual CO2 emissions of the solar-driven hollow fibre membrane dehumidification system is 0.2642 tCO2, which is 68.89% lower than the traditional refrigeration dehumidification system.

Suggested Citation

  • Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010236
    DOI: 10.1016/j.renene.2023.119109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    2. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & Hassan, Hamdy, 2022. "Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives," Energy, Elsevier, vol. 253(C).
    3. Wu, Jinxing & Sun, Shoujun & Song, Qinglu & Sun, Dandan & Wang, Dechang & Li, Jiaxu, 2023. "Energy, exergy, exergoeconomic and environmental (4E) analysis of cascade heat pump, recuperative heat pump and carbon dioxide heat pump with different temperature lifts," Renewable Energy, Elsevier, vol. 207(C), pages 407-421.
    4. Kumar, Ritunesh & Khan, Rehan & Ma, Zhenjun, 2021. "Suitability of plate versus cylinder surface for the development of low flow falling film liquid desiccant dehumidifiers," Renewable Energy, Elsevier, vol. 179(C), pages 723-736.
    5. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    6. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    7. Huang, Si-Min & Zhang, Li-Zhi, 2013. "Researches and trends in membrane-based liquid desiccant air dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 425-440.
    8. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    9. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    2. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Zhang, Yu & Liu, Yilin & An, Hui & Jin, Liwen, 2024. "Multi-objective optimization of hollow fiber membrane-based water cooler for enhanced cooling performance and energy efficiency," Renewable Energy, Elsevier, vol. 222(C).
    3. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    4. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    6. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effect of random fiber distribution on the performance of counter-flow hollow fiber membrane-based direct evaporative coolers," Energy, Elsevier, vol. 282(C).
    7. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    8. Sebastian Englart & Krzysztof Rajski, 2021. "Performance Investigation of a Hollow Fiber Membrane-Based Desiccant Liquid Air Dehumidification System," Energies, MDPI, vol. 14(11), pages 1-20, June.
    9. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    10. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    11. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    12. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    13. Cong Jiao & Zeyu Li, 2023. "An Updated Review of Solar Cooling Systems Driven by Photovoltaic–Thermal Collectors," Energies, MDPI, vol. 16(14), pages 1-34, July.
    14. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    15. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    16. Mahir Faris Abdullah & Rozli Zulkifli & Hazim Moria & Asmaa Soheil Najm & Zambri Harun & Shahrir Abdullah & Wan Aizon Wan Ghopa & Noor Humam Sulaiman, 2021. "Assessment of TiO 2 Nanoconcentration and Twin Impingement Jet of Heat Transfer Enhancement—A Statistical Approach Using Response Surface Methodology," Energies, MDPI, vol. 14(3), pages 1-29, January.
    17. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    18. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    19. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    20. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.