IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018589.html
   My bibliography  Save this article

Multi-objective optimization of solar-driven hollow fiber membrane dehumidification system based on MOPSO

Author

Listed:
  • Men, Yukui
  • Dong, Yanfang
  • Zeng, Si
  • Liang, Caihang
  • Tong, Xiaoman

Abstract

The solar-driven hollow fiber membrane dehumidification (SHFMD) system is a renewable, energy-saving, and highly effective dehumidification system. It provides an effective solution to the problem of air-entrained liquid droplets during the traditional solution dehumidification process. The system's mathematical model was established and the reliability of the mathematical model was verified by experimental data. To enhance the comprehensive performance of the system, the multi-objective particle swarm optimization (MOPSO) algorithm is used in this paper to optimize the multi-objective parameters of the system. The objective function is the total exergy destruction of the system and the dehumidification capacity of the system. The optimization variables are cold water temperature, cold water flow rate, solution flow rate, air flow rate, and hot water flow rate. The optimization is performed using the multi-objective particle swarm optimization (MOPSO) algorithm to obtain the Pareto front, and the points of the Pareto front are normalized. Finally, the optimal trade-off point of the Pareto frontier is obtained. Each operating parameter of the optimal point of the Pareto front is also analyzed. The results show that the air flow rate and cold water flow rate have the most influence on the conflict between the total exergy destruction of the system and the dehumidification capacity of the system.

Suggested Citation

  • Men, Yukui & Dong, Yanfang & Zeng, Si & Liang, Caihang & Tong, Xiaoman, 2024. "Multi-objective optimization of solar-driven hollow fiber membrane dehumidification system based on MOPSO," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018589
    DOI: 10.1016/j.energy.2024.132084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Si-Min & Zhang, Li-Zhi, 2013. "Researches and trends in membrane-based liquid desiccant air dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 425-440.
    2. Khorasaninejad, Ehsan & Hajabdollahi, Hassan, 2014. "Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm," Energy, Elsevier, vol. 72(C), pages 680-690.
    3. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    4. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    5. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    6. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    7. B. Kiran Naik & Mullapudi Joshi & Palanisamy Muthukumar & Muhammad Sultan & Takahiko Miyazaki & Redmond R. Shamshiri & Hadeed Ashraf, 2020. "Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    8. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    9. Bai, Hongyu & Zhu, Jie & Chen, Xiangjie & Chu, Junze & Cui, Yuanlong & Yan, Yuying, 2020. "Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 258(C).
    10. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    11. Harrouz, Jean Paul & Ghali, Kamel & Keniar, Khoudor & Ghaddar, Nesreen, 2023. "Numerical and experimental investigation of thermosyphon-driven liquid desiccant loop performance for sustainable indoor humidity removal," Applied Energy, Elsevier, vol. 343(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Cao, Menglong & Wang, Zhe & Tang, Haobo & Li, Songran & Ji, Yulong & Han, Fenghui, 2024. "Heat flow topology-driven thermo-mass decoupling strategy: Cross-scale regularization modeling and optimization analysis," Applied Energy, Elsevier, vol. 367(C).
    4. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    5. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    8. Gezahegn Habtamu Tafesse & Gulam Mohammed Sayeed Ahmed & Irfan Anjum Badruddin & Sarfaraz Kamangar & Mohamed Hussien, 2023. "Estimation of Evaporation of Water from a Liquid Desiccant Solar Collector and Regenerator by Using Conservation of Mass and Energy Principles," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    9. Farah G. Fahad & Shurooq T. Al-Humairi & Amged T. Al-Ezzi & Hasan Sh. Majdi & Abbas J. Sultan & Thaqal M. Alhuzaymi & Thaar M. Aljuwaya, 2023. "Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    10. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2018. "Review on substrate of solid desiccant dehumidification system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3236-3249.
    11. Harrouz, Jean Paul & Ghali, Kamel & Keniar, Khoudor & Ghaddar, Nesreen, 2023. "Numerical and experimental investigation of thermosyphon-driven liquid desiccant loop performance for sustainable indoor humidity removal," Applied Energy, Elsevier, vol. 343(C).
    12. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Hu, Tianxiang & Shen, Yongting & Kwan, Trevor Hocksun & Pei, Gang, 2022. "Absorption chiller waste heat utilization to the desiccant dehumidifier system for enhanced cooling – Energy and exergy analysis," Energy, Elsevier, vol. 239(PA).
    14. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    15. Dong, Honglin & Wang, Dandan & Niu, Xiaofeng & Zhang, Yue & He, Xu & Ke, Qing & Lu, Zhiheng, 2022. "Experimental study on the liquid desiccant dehumidification performance of microencapsulated phase change materials slurry," Energy, Elsevier, vol. 239(PC).
    16. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    17. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    19. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    20. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.