IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022752.html
   My bibliography  Save this article

Effect of random fiber distribution on the performance of counter-flow hollow fiber membrane-based direct evaporative coolers

Author

Listed:
  • Yan, Weichao
  • Cui, Xin
  • Meng, Xiangzhao
  • Yang, Chuanjun
  • Liu, Yilin
  • An, Hui
  • Jin, Liwen

Abstract

The counter-flow hollow fiber membrane-based direct evaporative cooler (MDEC) was proposed as an energy-efficient and hygienic air cooling solution. The random sequential addition algorithm was used to simulate the randomness of fiber distribution within the MDEC in engineering practice. 3D numerical models were developed with a computational domain determined as a hexagonal prism containing multiple fibers. The experimentally validated model depicted the air state variation along the path under regular and random fiber distributions. The differences in wet-bulb effectiveness (εwb) and coefficient of performance (COP) of MDEC with two configurations, regular and random fiber distributions, were compared for different packing fractions and air flow rates. Furthermore, dimensionless correlations for the shell-side friction factor (f), Nusselt number (Nu), and Sherwood number (Sh) were derived to generalize the results to other hollow fiber membrane modules employed in liquid/gas systems. The results showed that the channel flow effect and dead zone under the random configuration worsened the heat and moisture handling performance of MDEC. Compared with the regular configuration, both Nu and Sh were degraded by 11.6–55.6%, but f was desirably reduced by 28.8–49.8%. Balancing cooling capability and energy efficiency, a regular configuration with moderate packing fraction was more beneficial for engineering practice.

Suggested Citation

  • Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effect of random fiber distribution on the performance of counter-flow hollow fiber membrane-based direct evaporative coolers," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022752
    DOI: 10.1016/j.energy.2023.128881
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    2. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    3. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    4. Huang, Si-Min & Zhang, Li-Zhi, 2013. "Researches and trends in membrane-based liquid desiccant air dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 425-440.
    5. Wang, Lei & Zhan, Changhong & Zhang, Jianli & Zhao, Xudong, 2019. "Optimization of the counter-flow heat and mass exchanger for M-Cycle indirect evaporative cooling assisted with entropy analysis," Energy, Elsevier, vol. 171(C), pages 1206-1216.
    6. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei, 2018. "A comprehensive review of the Maisotsenko-cycle based air conditioning systems," Energy, Elsevier, vol. 156(C), pages 725-749.
    8. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Wang, Jue & Lu, Jun & Li, Wuyan & Zeng, Cheng & Shi, Fenghao, 2022. "Numerical study on performance of a hybrid indirect evaporative cooling heat recovery heat pump ventilator as applied in different climatic regions of China," Energy, Elsevier, vol. 239(PE).
    10. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    2. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Zhang, Yu & Liu, Yilin & An, Hui & Jin, Liwen, 2024. "Multi-objective optimization of hollow fiber membrane-based water cooler for enhanced cooling performance and energy efficiency," Renewable Energy, Elsevier, vol. 222(C).
    3. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Shi, Wenchao & Yang, Hongxing & Ma, Xiaochen & Liu, Xiaohua, 2023. "Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology," Energy, Elsevier, vol. 283(C).
    5. Cui, Xin & Yang, Chuanjun & Yan, Weichao & Zhang, Lianying & Wan, Yangda & Chua, Kian Jon, 2023. "Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler," Energy, Elsevier, vol. 278(PB).
    6. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    7. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    9. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    10. Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
    11. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    12. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    13. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2020. "Analytical/experimental sensitivity study of key design and operational parameters of perforated Maisotsenko cooler based on novel wet-surface theory," Applied Energy, Elsevier, vol. 262(C).
    14. Shi, Wenchao & Min, Yunran & Ma, Xiaochen & Chen, Yi & Yang, Hongxing, 2022. "Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies," Applied Energy, Elsevier, vol. 311(C).
    15. Pandelidis, Demis & Cichoń, Aleksandra & Pacak, Anna & Anisimov, Sergey & Drąg, Paweł, 2018. "Counter-flow indirect evaporative cooler for heat recovery in the temperate climate," Energy, Elsevier, vol. 165(PA), pages 877-894.
    16. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    17. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    18. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    19. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Thermal management in legacy air-cooled data centers: An overview and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.