IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222010301.html
   My bibliography  Save this article

Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives

Author

Listed:
  • Gado, Mohamed G.
  • Ookawara, Shinichi
  • Nada, Sameh
  • Hassan, Hamdy

Abstract

An assessment of the cascade adsorption-compression refrigeration system by adopting renewable energy for cold storage applications based on energy, exergy, exergoeconomic, and enviroeconomic perspectives is presented. The cascade cycle aims to dwindle the electric power of the compression subcycle with reduced condensation pressure. The thermodynamic modeling of the proposed system is developed at climatic conditions of Alexandria/Egypt for two scenarios of renewable systems, including (i) biomass-solar (Scenario-I) and (ii) biomass-solar-wind (Scenario-II). The results demonstrate that the COP of the cascade system is ameliorated by 41.6% compared to the conventional compression system; highlighting an energy saving of 42%. The proposed system has an annual average COP and exergetic efficiency of 0.122 and 1.78%, respectively for Scenario-I and 0.124 and 1.8%, respectively for Scenario-II. Scenario-I and Scenario-II deliver refrigeration at 0.235 $/kWh, and 0.237 $/kWh, respectively. Herein, the exergoeconomic parameter for Scenario-I and Scenario-II is 0.70 kWh/$ and 0.69 kWh/$, respectively. It is found that both scenarios alleviate about 32.75 and 5.35 tons of CO2 per annum based on environmental and exergoenvironmental standpoints, respectively. Besides, the enviroeconomic and exergoenvironmental parameters are about 474.90 $/kW and 77.60 $/kW respectively, over the project lifespan of 20 years for both scenarios.

Suggested Citation

  • Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & Hassan, Hamdy, 2022. "Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010301
    DOI: 10.1016/j.energy.2022.124127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    2. El-Sharkawy, Ibrahim I. & AbdelMeguid, Hossam & Saha, Bidyut Baran, 2014. "Potential application of solar powered adsorption cooling systems in the Middle East," Applied Energy, Elsevier, vol. 126(C), pages 235-245.
    3. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Zhai, X.Q. & Wang, R.Z., 2010. "Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage," Applied Energy, Elsevier, vol. 87(3), pages 824-835, March.
    5. Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
    6. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    7. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    8. Hassan, Hamdy, 2020. "Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity," Renewable Energy, Elsevier, vol. 148(C), pages 437-450.
    9. Dino, Giuseppe E. & Palomba, Valeria & Nowak, Eliza & Frazzica, Andrea, 2021. "Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application," Applied Energy, Elsevier, vol. 281(C).
    10. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
    11. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    2. Sheta, Mahmoud & Hassan, Hamdy, 2023. "Performance investigation of standalone multi-effect mechanical vapor compression desalination system powered by cascade photovoltaic/thermal-photovoltaic solar field-assisted heat pump system," Renewable Energy, Elsevier, vol. 219(P2).
    3. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.
    4. Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
    5. Qi, Xinrui & Yang, Chunsheng & Huang, Mingyang & Ma, Zhenjun & Hnydiuk-Stefan, Anna & Feng, Ke & Siarry, Patrick & Królczyk, Grzegorz & Li, Z., 2024. "Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources," Energy, Elsevier, vol. 288(C).
    6. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    7. Cong Jiao & Zeyu Li, 2023. "An Updated Review of Solar Cooling Systems Driven by Photovoltaic–Thermal Collectors," Energies, MDPI, vol. 16(14), pages 1-34, July.
    8. Mahmoud Badawy Elsheniti & Hany Al-Ansary & Jamel Orfi & Abdelrahman El-Leathy, 2024. "Performance Evaluation and Cycle Time Optimization of Vapor-Compression/Adsorption Cascade Refrigeration Systems," Sustainability, MDPI, vol. 16(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    4. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    5. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    6. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    7. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    8. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    9. Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
    10. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    11. Abo-Elyousr, Farag K. & Guerrero, Josep M. & Ramadan, Haitham S., 2021. "Prospective hydrogen-based microgrid systems for optimal leverage via metaheuristic approaches," Applied Energy, Elsevier, vol. 300(C).
    12. Allouhi, A. & Kousksou, T. & Jamil, A. & Agrouaz, Y. & Bouhal, T. & Saidur, R. & Benbassou, A., 2016. "Performance evaluation of solar adsorption cooling systems for vaccine preservation in Sub-Saharan Africa," Applied Energy, Elsevier, vol. 170(C), pages 232-241.
    13. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    14. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Antonios Charalampidis & Sotirios Karellas & Luisa F. Cabeza, 2023. "Numerical and Experimental Analysis of a Low-GWP Heat Pump Coupled to Electrical and Thermal Energy Storage to Increase the Share of Renewables across Europe," Sustainability, MDPI, vol. 15(6), pages 1-33, March.
    16. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    17. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    18. El Fadar, Abdellah, 2016. "Novel process for performance enhancement of a solar continuous adsorption cooling system," Energy, Elsevier, vol. 114(C), pages 10-23.
    19. Poshtiri, Amin Haghighi & Bahar, Safoura & Jafari, Azadeh, 2016. "Daily cooling of one-story buildings using domed roof and solar adsorption cooling system," Applied Energy, Elsevier, vol. 182(C), pages 299-319.
    20. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.