IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp723-736.html
   My bibliography  Save this article

Suitability of plate versus cylinder surface for the development of low flow falling film liquid desiccant dehumidifiers

Author

Listed:
  • Kumar, Ritunesh
  • Khan, Rehan
  • Ma, Zhenjun

Abstract

Liquid desiccant systems (LDS) are promising as they can be driven by renewable energy. Presently, plastic falling film towers are gaining more attention than metallic columns in LDS due to their excellent anti-corrosive characteristics. However, plastics suffer from penurious performance due to their hydrophobic nature. Apart from solid surface wettability, its geometry also plays a vital role in the formation of the continuous thin film over it. In the current experimental work, the dehumidification performance of adiabatic vertical polypropylene (PP) solid circular cylinders is investigated as an alternative to vertical PP plates. Modified circular cylinder surface is prepared following surface modification to overcome hydrophobic nature of the plastic surface. The performance of the circular cylinder surface is compared with the plate surface. It was found that the Plain PP circular cylinder offered 21–200% improvement in dehumidification rate as compared to the Plain PP plate with an average improvement of 55.9%. Similarly, the Modified PP circular cylinder enhanced the dehumidification rate of the Plain PP circular cylinder by 18.2–61% with an average improvement of 31.3%. A new generalized correlation is proposed to predict the effectiveness of adiabatic and non-adiabatic falling film towers by incorporating shear force, enthalpy difference, and moisture transfer potential between liquid desiccant and air along with wetness behavior parameters. The mean effective error of the current correlation is 11.7% for eight datasets. The findings of this study could be useful for designing small capacity low flow falling film tower-based solar hybrid liquid desiccant systems for residential and commercial applications.

Suggested Citation

  • Kumar, Ritunesh & Khan, Rehan & Ma, Zhenjun, 2021. "Suitability of plate versus cylinder surface for the development of low flow falling film liquid desiccant dehumidifiers," Renewable Energy, Elsevier, vol. 179(C), pages 723-736.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:723-736
    DOI: 10.1016/j.renene.2021.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    3. Dong, Chuanshuai & Lu, Lin & Wen, Tao, 2018. "Investigating dehumidification performance of solar-assisted liquid desiccant dehumidifiers considering different surface properties," Energy, Elsevier, vol. 164(C), pages 978-994.
    4. Michel, Benoit & Le Pierrès, Nolwenn & Stutz, Benoit, 2017. "Performances of grooved plates falling film absorber," Energy, Elsevier, vol. 138(C), pages 103-117.
    5. Liu, X.H. & Qu, K.Y. & Jiang, Y., 2006. "Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer," Renewable Energy, Elsevier, vol. 31(10), pages 1627-1639.
    6. Wen, Tao & Lu, Lin & Dong, Chuanshuai & Luo, Yimo, 2018. "Development and experimental study of a novel plate dehumidifier made of anodized aluminum," Energy, Elsevier, vol. 144(C), pages 169-177.
    7. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    8. Liang, Jyun-De & Huang, Bo-Hao & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "Experimental investigation of a liquid desiccant dehumidification system integrated with shallow geothermal energy," Energy, Elsevier, vol. 191(C).
    9. Luo, Yimo & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing & Yang, Hongxing, 2014. "Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 133(C), pages 127-134.
    10. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    2. Sun, Chongzheng & Liu, Yuxiang & Yang, Xin & Li, Yuxing & Geng, Xiaoyi & Han, Hui & Lu, Xiao, 2024. "Experimental and numerical study on the offshore adaptability of new FLH2 floating hydrogen liquefaction production storage and offloading unit," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    2. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    3. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    4. Yang, Zili & Tao, Ruiyang & Chen, Lu-An & Zhong, Ke & Chen, Bin, 2020. "Feasibility study on improving the performance of atomization liquid desiccant dehumidifier with standing-wave ultrasound," Energy, Elsevier, vol. 205(C).
    5. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    6. Wen, Tao & Lu, Lin & Li, Mai & Zhong, Hong, 2018. "Comparative study of the regeneration characteristics of LiCl and a new mixed liquid desiccant solution," Energy, Elsevier, vol. 163(C), pages 992-1005.
    7. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Qing Cheng & Han Wang & Lin Zhu & Yao Chen, 2023. "A current efficiency model coupled with desiccant molecular weight for electrodialysis regeneration in liquid desiccant air-conditioning systems," Energy & Environment, , vol. 34(4), pages 909-926, June.
    9. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Simulation of potential standalone liquid desiccant cooling cycles," Energy, Elsevier, vol. 81(C), pages 652-661.
    10. Kashish Kumar & Alok Singh & Saboor Shaik & C Ahamed Saleel & Abdul Aabid & Muneer Baig, 2022. "Comparative Analysis on Dehumidification Performance of KCOOH–LiCl Hybrid Liquid Desiccant Air-Conditioning System: An Energy-Saving Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    11. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    12. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    13. Tao Wen & Lin Lu & Hongxing Yang & Yimo Luo, 2018. "Investigation on the Regeneration and Corrosion Characteristics of an Anodized Aluminum Plate Regenerator," Energies, MDPI, vol. 11(5), pages 1-15, May.
    14. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    15. Tao, Wen & Yimo, Luo & Lin, Lu, 2019. "A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology," Applied Energy, Elsevier, vol. 240(C), pages 486-498.
    16. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    17. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    18. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    19. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    20. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:723-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.