IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123008583.html
   My bibliography  Save this article

Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach

Author

Listed:
  • Zhang, Liwenbo
  • Wilson, Robin
  • Sumner, Mark
  • Wu, Yupeng

Abstract

Cloud dynamics are the main factor influencing the intermittent variability of short-term solar irradiance, and therefore affect the solar farm output. Sky images have been widely used for short-term solar irradiance prediction with encouraging results due to the spatial information they contain. At present, there is little discussion on the most promising deep learning methods to integrate images with quantitative measures of solar irradiation. To address this gap, we optimise the current mainstream framework using gate architecture and propose a new transformer-based framework in an attempt to achieve better prediction results. It was found that compared to the classical CNN model based on late feature-level fusion, the transformer framework model based on early feature-level prediction improves the balanced accuracy of ramp events by 9.43% and 3.91% on the 2-min and 6-min scales, respectively. However, based on the results, it can be concluded that for the single picture-digital bimodal model, the spatial information validity of a single picture is difficult to achieve beyond 10 min. This work has the potential to contribute to the interpretability and iterability of deep learning models based on sky images.

Suggested Citation

  • Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123008583
    DOI: 10.1016/j.renene.2023.118952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
    2. Abuella, Mohamed & Chowdhury, Badrul, 2019. "Forecasting of solar power ramp events: A post-processing approach," Renewable Energy, Elsevier, vol. 133(C), pages 1380-1392.
    3. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    4. Caldas, M. & Alonso-Suárez, R., 2019. "Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1643-1658.
    5. Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).
    6. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    7. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    8. Anagnostos, D. & Schmidt, T. & Cavadias, S. & Soudris, D. & Poortmans, J. & Catthoor, F., 2019. "A method for detailed, short-term energy yield forecasting of photovoltaic installations," Renewable Energy, Elsevier, vol. 130(C), pages 122-129.
    9. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    10. Kamadinata, Jane Oktavia & Ken, Tan Lit & Suwa, Tohru, 2019. "Sky image-based solar irradiance prediction methodologies using artificial neural networks," Renewable Energy, Elsevier, vol. 134(C), pages 837-845.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
    2. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Michael, Neethu Elizabeth & Bansal, Ramesh C. & Ismail, Ali Ahmed Adam & Elnady, A. & Hasan, Shazia, 2024. "A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation," Renewable Energy, Elsevier, vol. 222(C).
    4. Nie, Yuhao & Paletta, Quentin & Scott, Andea & Pomares, Luis Martin & Arbod, Guillaume & Sgouridis, Sgouris & Lasenby, Joan & Brandt, Adam, 2024. "Sky image-based solar forecasting using deep learning with heterogeneous multi-location data: Dataset fusion versus transfer learning," Applied Energy, Elsevier, vol. 369(C).
    5. Liu, Jincheng & Li, Teng, 2024. "Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model," Energy, Elsevier, vol. 293(C).
    6. Bai, Mingliang & Yao, Peng & Dong, Haiyu & Fang, Zuliang & Jin, Weixin & Xusheng Yang, & Liu, Jinfu & Yu, Daren, 2024. "Spatial-temporal characteristics analysis of solar irradiance forecast errors in Europe and North America," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    2. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    3. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    4. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
    6. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    7. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    8. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    9. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
    10. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    12. Chu, Yinghao & Yang, Dazhi & Yu, Hanxin & Zhao, Xin & Li, Mengying, 2024. "Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance?," Applied Energy, Elsevier, vol. 356(C).
    13. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    14. Sebastián Vázquez-Ramírez & Miguel Torres-Ruiz & Rolando Quintero & Kwok Tai Chui & Carlos Guzmán Sánchez-Mejorada, 2023. "An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    15. Niu, Yinsen & Song, Jifeng & Zou, Lianglin & Yan, Zixuan & Lin, Xilong, 2024. "Cloud detection method using ground-based sky images based on clear sky library and superpixel local threshold," Renewable Energy, Elsevier, vol. 226(C).
    16. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    17. Wen-Chi Kuo & Chiun-Hsun Chen & Sih-Yu Chen & Chi-Chuan Wang, 2022. "Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method," Energies, MDPI, vol. 15(13), pages 1-17, June.
    18. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    20. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123008583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.