IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000089.html
   My bibliography  Save this article

A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation

Author

Listed:
  • Michael, Neethu Elizabeth
  • Bansal, Ramesh C.
  • Ismail, Ali Ahmed Adam
  • Elnady, A.
  • Hasan, Shazia

Abstract

Uncertain weather scenarios have an impact on the output of solar farms and therefore affect the security of the grid. It is advantageous for power system operators to forecast solar energy to balance the load generation and for optimal power scheduling. The most promising deep-learning techniques to combine weather variables with precise measurements of solar irradiance are not widely discussed. To close this research gap and produce better prediction results, this article aims to formulate and compare two distinctive deep learning algorithms for using time series forecasting approaches to predict solar irradiance. For multivariate data, the forecasting technique Bi-Directional Long Short-Term Memory (BiLSTM), and BiLSTM-GRU (Gated Recurrent Unit) Dropout, are examined in this study. The output results from the proposed model are compared with other benchmark models based on performance error measurements, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient of Determination (R2) and Mean Absolute Percentage Error (MAPE). It was found that the proposed hybrid method, BiLSTM-GRU with dropout outperformed the other methods in terms of solar irradiance predicting accuracy. The analysis presented the best RMSE of 1.55 and MAE of 1.13 for BiLSTM and RMSE of 1.40 and MAE of 0.91 for BiLSTM-GRU architecture using hyperparameter tuning. The comparison results show that the prediction accuracy is improved by tuning the hyperparameters.

Suggested Citation

  • Michael, Neethu Elizabeth & Bansal, Ramesh C. & Ismail, Ali Ahmed Adam & Elnady, A. & Hasan, Shazia, 2024. "A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000089
    DOI: 10.1016/j.renene.2024.119943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lima, Francisco J.L. & Martins, Fernando R. & Pereira, Enio B. & Lorenz, Elke & Heinemann, Detlev, 2016. "Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 807-818.
    2. Sharma, Amandeep & Kakkar, Ajay, 2018. "Forecasting daily global solar irradiance generation using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2254-2269.
    3. Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
    4. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    5. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    6. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
    7. VanDeventer, William & Jamei, Elmira & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Soon, Tey Kok & Horan, Ben & Mekhilef, Saad & Stojcevski, Alex, 2019. "Short-term PV power forecasting using hybrid GASVM technique," Renewable Energy, Elsevier, vol. 140(C), pages 367-379.
    8. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    9. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    2. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    3. Zhou, Kaile & Chu, Yibo & Hu, Rong, 2023. "Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading," Energy, Elsevier, vol. 285(C).
    4. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    6. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    7. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    8. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    9. Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
    10. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    11. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    12. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    13. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    14. Jiahui Wang & Mingsheng Jia & Shishi Li & Kang Chen & Cheng Zhang & Xiuyu Song & Qianxi Zhang, 2024. "Short-Term Power-Generation Prediction of High Humidity Island Photovoltaic Power Station Based on a Deep Hybrid Model," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    15. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    16. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    17. Yuan An & Kaikai Dang & Xiaoyu Shi & Rong Jia & Kai Zhang & Qiang Huang, 2021. "A Probabilistic Ensemble Prediction Method for PV Power in the Nonstationary Period," Energies, MDPI, vol. 14(4), pages 1-18, February.
    18. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    19. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh & Shaker, Hamid Reza, 2021. "High dimensional very short-term solar power forecasting based on a data-driven heuristic method," Energy, Elsevier, vol. 219(C).
    20. Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.