Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
- Kamadinata, Jane Oktavia & Ken, Tan Lit & Suwa, Tohru, 2019. "Sky image-based solar irradiance prediction methodologies using artificial neural networks," Renewable Energy, Elsevier, vol. 134(C), pages 837-845.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohamed Trabelsi & Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Shady S. Refaat & Tingwen Huang & Fakhreddine S. Oueslati, 2022. "An Effective Hybrid Symbolic Regression–Deep Multilayer Perceptron Technique for PV Power Forecasting," Energies, MDPI, vol. 15(23), pages 1-14, November.
- Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- A-Hyun Jung & Dong-Hyun Lee & Jin-Young Kim & Chang Ki Kim & Hyun-Goo Kim & Yung-Seop Lee, 2022. "Regional Photovoltaic Power Forecasting Using Vector Autoregression Model in South Korea," Energies, MDPI, vol. 15(21), pages 1-13, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
- Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
- Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
- Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
- Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
- Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
- Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
- Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
- Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
- Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
- Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
- Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
- Sebastián Vázquez-Ramírez & Miguel Torres-Ruiz & Rolando Quintero & Kwok Tai Chui & Carlos Guzmán Sánchez-Mejorada, 2023. "An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
- Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
- Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
- Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
- Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
More about this item
Keywords
deep learning (DL); forecasting; neural network; renewable energy; solar power generation; sky image;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4779-:d:851451. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.