IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924017367.html
   My bibliography  Save this article

Transfer learning in very-short-term solar forecasting: Bridging single site data to diverse geographical applications

Author

Listed:
  • Zhang, Liwenbo
  • Wilson, Robin
  • Sumner, Mark
  • Wu, Yupeng

Abstract

Over the past decade, the rapid growth of solar energy penetration has posed significant challenges for grid balancing and scheduling, heightening the need for accurate and efficient short-term solar forecasting. While deep learning models have shown promise in improving forecasting accuracy, previous studies have often focused on data from specific sites, limiting their generalisability across different climatic and geographical conditions. This study addresses this limitation by employing a multimodal self-attention deep model, trained under the dry and clear climate conditions of Folsom, California, and integrating various transfer learning techniques. We examine the transferability of this model to a new dataset from Nottingham, UK, characterised by humid and rainy conditions. Specifically, we compare different transfer methods based on model architecture and validate performance with limited target site data (equivalent to two weeks of data). The model’s expertise can be effectively transferred, reducing the required data for successful model training by 80% (from four months to two weeks). Simulations under realistic scenarios demonstrate that the model, trained with just two weeks of data from the deployment site, achieved performance surpassing the baseline. This work demonstrates the feasibility of transferring deep learning models for solar forecasting across diverse climatic conditions, significantly reducing the data and time needed for model adaptation and deployment. This has the potential to enhance the reliability and efficiency of solar energy integration into power grids globally.

Suggested Citation

  • Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2025. "Transfer learning in very-short-term solar forecasting: Bridging single site data to diverse geographical applications," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924017367
    DOI: 10.1016/j.apenergy.2024.124353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924017367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.