IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123009102.html
   My bibliography  Save this article

Maximizing the utilization of lignocellulosic biomass: Process development and analysis

Author

Listed:
  • Ahn, Byeongchan
  • Park, Chulhwan
  • Liu, J. Jay
  • Ok, Yong Sik
  • Won, Wangyun

Abstract

Herein, an innovative strategy is proposed for the manufacture of biochemicals (dissolving pulp, furfural, high-purity lignin, and acetic acid) from lignocellulosic biomass. Utilizing sulfuric acid as the catalyst and a mixture of water and γ-valerolactone (GVL) as the solvent, the biomass was successfully fractionated into four major components: 1) cellulose, which was converted into dissolving pulp for fiber production; 2) hemicellulose, which was decomposed into furfural, a valuable platform chemical; 3) lignin, which was purified intensively for the production of carbon foams or battery anodes; and 4) acetate, which was converted into acetic acid, a chemical that is potentially useful as a H2 carrier and in H2 production. Separation subsystems were developed to recover the water and GVL mixture effectively for reuse in biomass fractionation and to separate cellulose, hemicellulose, lignin, and acetate for further treatment. To reduce the energy requirements, a heat pump was introduced and heat integration was conducted. The integrated process achieved a positive NPV ($19.9 million), making our process economically viable against initial uncertainties and high risks related to the project. Furthermore, dissolving pulp production was found to be the major environmental contributor accounting for 47.1% of fossil depletion and 36.4% of climate change.

Suggested Citation

  • Ahn, Byeongchan & Park, Chulhwan & Liu, J. Jay & Ok, Yong Sik & Won, Wangyun, 2023. "Maximizing the utilization of lignocellulosic biomass: Process development and analysis," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123009102
    DOI: 10.1016/j.renene.2023.119004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Kefeng & Won, Wangyun & Barnett, Kevin J. & Brentzel, Zachary J. & Alonso, David M. & Huber, George W. & Dumesic, James A. & Maravelias, Christos T., 2018. "Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol," Applied Energy, Elsevier, vol. 213(C), pages 585-594.
    2. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    4. Won, Wangyun & Maravelias, Christos T., 2017. "Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 357-366.
    5. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2021. "Coproduction of butene oligomers and adipic acid from lignocellulosic biomass: Process design and evaluation," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenmei Tang & Jian Pan & Deqing Zhu & Zhengqi Guo & Congcong Yang & Siwei Li, 2024. "Optimizing Combustion Efficiency in Blast Furnace Injection: A Sustainable Approach Using Biomass Char and Coal Mixtures," Sustainability, MDPI, vol. 16(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyunwoo & Lee, Shinje & Won, Wangyun, 2021. "System-level analyses for the production of 1,6-hexanediol from cellulose," Energy, Elsevier, vol. 214(C).
    2. Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2020. "Process integration and optimization for economical production of commodity chemicals from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 162(C), pages 242-248.
    4. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    5. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    7. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    8. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    9. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    10. Artem A. Medvedev & Daria A. Beldova & Konstantin B. Kalmykov & Alexey V. Kravtsov & Marina A. Tedeeva & Leonid M. Kustov & Sergey F. Dunaev & Alexander L. Kustov, 2022. "Carbon Dioxide Assisted Conversion of Hydrolysis Lignin Catalyzed by Nickel Compounds," Energies, MDPI, vol. 15(18), pages 1-12, September.
    11. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    12. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    13. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    14. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    15. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    16. Bahman, Ammar & Rosario, Luis & Rahman, Muhammad M., 2012. "Analysis of energy savings in a supermarket refrigeration/HVAC system," Applied Energy, Elsevier, vol. 98(C), pages 11-21.
    17. Changqing Liu & Ronghua Wu & Hao Yu & Hao Zhan & Long Xu, 2022. "Heat Transfer Characteristics of Cold Water Phase-Change Heat Exchangers under Active Icing Conditions," Energies, MDPI, vol. 15(19), pages 1-18, October.
    18. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    19. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    20. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123009102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.