IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6140-d1437737.html
   My bibliography  Save this article

Optimizing Combustion Efficiency in Blast Furnace Injection: A Sustainable Approach Using Biomass Char and Coal Mixtures

Author

Listed:
  • Chenmei Tang

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Jian Pan

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Deqing Zhu

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Zhengqi Guo

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Congcong Yang

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Siwei Li

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

Abstract

This study investigated the combustion characteristics of mixed straw char and coal powder when used in blast furnace injection. The experiments examined the effects of mixing ratios between biomass char types of wheat straw char, corn straw char as well as cotton straw char, and anthracite coal on combustion characteristics and the injection effect of blast furnace. The results show that a 1:1 mixing ratio of wheat straw char and anthracite coal yields the best combustion characteristics, followed by a 1:1 ratio of corn straw char and anthracite coal. A 2:1 mixture of cotton straw char and anthracite coal exhibits the highest combustion efficiency. The study on the grindability of the mixtures indicates that straw char is easier to grind due to its brittleness. Blast furnace coal injection experiments reveal that a 50:50 mixture of cotton straw char and anthracite coal achieves the highest combustion efficiency at 74%, which is a 20.2% improvement compared to mixtures of bituminous coal and anthracite coal, significantly outperforming the other ratios. The findings underscore the importance of integrating renewable biomass resources in industrial applications to enhance sustainability in the metallurgical industry.

Suggested Citation

  • Chenmei Tang & Jian Pan & Deqing Zhu & Zhengqi Guo & Congcong Yang & Siwei Li, 2024. "Optimizing Combustion Efficiency in Blast Furnace Injection: A Sustainable Approach Using Biomass Char and Coal Mixtures," Sustainability, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6140-:d:1437737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    2. Ahn, Byeongchan & Park, Chulhwan & Liu, J. Jay & Ok, Yong Sik & Won, Wangyun, 2023. "Maximizing the utilization of lignocellulosic biomass: Process development and analysis," Renewable Energy, Elsevier, vol. 215(C).
    3. Yalin Wang & Beibei Yan & Yu Wang & Jiahao Zhang & Xiaozhong Chen & Rob J. M. Bastiaans, 2021. "A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    2. Bahareh Vafakish & Amin Babaei-Ghazvini & Mahmood Ebadian & Bishnu Acharya, 2023. "Pyrolysis and Combustion Behavior of Flax Straw as Biomass: Evaluation of Kinetic, Thermodynamic Parameters, and Qualitative Analysis of Degradation Products," Energies, MDPI, vol. 16(19), pages 1-20, October.
    3. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    4. Cueva Zepeda, Lolita & Griffin, Gregory & Shah, Kalpit & Al-Waili, Ibrahim & Parthasarathy, Rajarathinam, 2023. "Energy potential, flow characteristics and stability of water and alcohol-based rice-straw biochar slurry fuel," Renewable Energy, Elsevier, vol. 207(C), pages 60-72.
    5. Liu, Jingxin & Huang, Simian & Wang, Teng & Mei, Meng & Chen, Si & Zhang, Wenjuan & Li, Jinping, 2021. "Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste," Renewable Energy, Elsevier, vol. 179(C), pages 179-188.
    6. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    7. Li, Sarengaowa & Chen, Heng & Yuan, Xin & Pan, Peiyuan & Xu, Gang & Wang, Xiuyan & Wu, Lining, 2024. "Energy, exergy and economic analysis of a poly-generation system combining sludge pyrolysis and medical waste plasma gasification," Energy, Elsevier, vol. 295(C).
    8. Taeeun Kwon & Byeongchan Ahn & Ki Hyuk Kang & Wangyun Won & Insoo Ro, 2024. "Unraveling the role of water in mechanism changes for economically viable catalytic plastic upcycling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    10. Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
    11. Konstantin Slyusarsky & Anton Tolokolnikov & Artur Gubin & Albert Kaltaev & Alexander Gorshkov & Askar Asilbekov & Kirill Larionov, 2023. "Ignition and Emission Characteristics of Waste Tires Pyrolysis Char Co-Combustion with Peat and Sawdust," Energies, MDPI, vol. 16(10), pages 1-16, May.
    12. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.
    13. Hongli Chen & Liqiang Zhang & Zhongliang Huang & Zijian Wu & Mengjiao Tan & Xuan Zhang & Longbo Jiang & Xiaoli Qin & Jing Huang & Hui Li, 2022. "Effect of Anoxic Atmosphere on the Physicochemical and Pelletization Properties of Pinus massoniana Sawdust during Storage," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    14. Zhang, Congyu & Zhan, Yong & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Culaba, Alvin B. & Zhang, Ying, 2024. "Correlations between different fuel property indicators and carbonization degree of oxidatively torrefied microalgal biomass," Energy, Elsevier, vol. 286(C).
    15. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    16. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.
    17. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 173(C), pages 733-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6140-:d:1437737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.