IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp582-600.html
   My bibliography  Save this article

A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate

Author

Listed:
  • Mohamed, Elamin
  • Riffat, Saffa
  • Omer, Siddig
  • Zeinelabdein, Rami

Abstract

Solar energy assisted heat pump systems (SAHP) have been used in this application. SAHP system with solar collectors and the heat pump are combined into one unit so as to convey the solar energy to the refrigerant. The solar collector is used as the evaporator, where the refrigerant is directly vaporized by solar energy input. Due to the complicated technical issues associated with a combined system that provides air for space heating and domestic hot water, most of the previous studies have concentrated on water heater heat pump mechanism. The current work is aimed at examining the use of a new multi-functional heat pump (DX-SAMHP), air for space heating mutually with solar for domestic hot water without employing an auxiliary heater. Comprehensive experimental and analytical studies in the first of its kind have been performed on the new system. The novel system with ternary panels and the thermal performance of the collector has been examined in this study. Results indicate that the DX-SAMHP using solar inner and outer panels for space and water heating is a promising substitute for the existing DX-SAHP water heater. Compared to the conventional solar-assisted SAHP heat pump systems, the coefficient performance of the new design doubles that of the conventional DX-SAHP systems.

Suggested Citation

  • Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:582-600
    DOI: 10.1016/j.renene.2018.06.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    2. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    3. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    4. Bi, Yuehong & Guo, Tingwei & Zhang, Liang & Chen, Lingen, 2004. "Solar and ground source heat-pump system," Applied Energy, Elsevier, vol. 78(2), pages 231-245, June.
    5. Huang, Wenzhu & Ji, Jie & Xu, Ning & Li, Guiqiang, 2016. "Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions," Applied Energy, Elsevier, vol. 171(C), pages 656-666.
    6. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
    7. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    8. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    9. Kong, X.Q. & Zhang, D. & Li, Y. & Yang, Q.M., 2011. "Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 36(12), pages 6830-6838.
    10. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jingyong & Zhou, Haihua & Xu, Lijie & Shi, Zhengrong & Zhang, Tao & Ji, Jie, 2022. "Energy and exergy analysis of a novel solar-air composite source multi-functional heat pump," Renewable Energy, Elsevier, vol. 185(C), pages 32-46.
    2. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    2. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    3. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    4. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    5. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    6. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    8. Kong, Xiangqiang & Jiang, Kailin & Dong, Shandong & Li, Ying & Li, Jianbo, 2018. "Control strategy and experimental analysis of a direct-expansion solar-assisted heat pump water heater with R134a," Energy, Elsevier, vol. 145(C), pages 17-24.
    9. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    10. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    11. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    12. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    13. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
    14. Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
    15. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    16. Yu, Xiaohui & Guo, Zhonglian & Gao, Zhi & Yang, Bin & Ma, Xiuqin & Dong, Shengming, 2023. "Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator," Renewable Energy, Elsevier, vol. 206(C), pages 418-427.
    17. Huang, Wenzhu & Ji, Jie & Xu, Ning & Li, Guiqiang, 2016. "Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions," Applied Energy, Elsevier, vol. 171(C), pages 656-666.
    18. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    19. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    20. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:582-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.