IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54495-5.html
   My bibliography  Save this article

Unraveling the role of water in mechanism changes for economically viable catalytic plastic upcycling

Author

Listed:
  • Taeeun Kwon

    (University of Science and Technology
    Korea University)

  • Byeongchan Ahn

    (Korea University)

  • Ki Hyuk Kang

    (Korea Research Institute of Chemical Technology (KRICT))

  • Wangyun Won

    (Korea University)

  • Insoo Ro

    (University of Science and Technology)

Abstract

The surge in global plastic production, reaching 400.3 million tons in 2022, has exacerbated environmental pollution, with only 11% of plastic being recycled. Catalytic recycling, particularly through hydrogenolysis and hydrocracking, offers a promising avenue for upcycling polyolefin plastic, comprising 55% of global plastic waste. This study investigates the influence of water on polyolefin depolymerization using Ru catalysts, revealing a promotional effect only when both metal and acid sites, particularly Brønsted acid site, are present. Findings highlight the impact of Ru content, metal-acid balance, and their proximity on this interaction, as well as their role in modulating the isomerization process, affecting product selectivity. Additionally, the interaction facilitates the suppression of coke formation, ultimately enhancing catalyst stability. A comprehensive techno-economic and life cycle assessment underscores the viability and environmental benefits of the process, particularly in the presence of water. These insights advance understanding and offer strategies for optimizing polyolefin plastic recycling processes.

Suggested Citation

  • Taeeun Kwon & Byeongchan Ahn & Ki Hyuk Kang & Wangyun Won & Insoo Ro, 2024. "Unraveling the role of water in mechanism changes for economically viable catalytic plastic upcycling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54495-5
    DOI: 10.1038/s41467-024-54495-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54495-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54495-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei-Tse Lee & Antoine Muyden & Felix D. Bobbink & Mounir D. Mensi & Jed R. Carullo & Paul J. Dyson, 2022. "Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jovana Zecevic & Gina Vanbutsele & Krijn P. de Jong & Johan A. Martens, 2015. "Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons," Nature, Nature, vol. 528(7581), pages 245-248, December.
    3. Munir, Dureem & Irfan, Muhammad F. & Usman, Muhammad R., 2018. "Hydrocracking of virgin and waste plastics: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 490-515.
    4. Ahn, Byeongchan & Park, Chulhwan & Liu, J. Jay & Ok, Yong Sik & Won, Wangyun, 2023. "Maximizing the utilization of lignocellulosic biomass: Process development and analysis," Renewable Energy, Elsevier, vol. 215(C).
    5. Pavel A. Kots & Brandon C. Vance & Caitlin M. Quinn & Cong Wang & Dionisios G. Vlachos, 2023. "A two-stage strategy for upcycling chlorine-contaminated plastic waste," Nature Sustainability, Nature, vol. 6(10), pages 1258-1267, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mabaleha, Sebete S. & Delo, Ayabulela & Kalita, Pranjal, 2024. "Secondary cracking suppression over zeolite-based catalysts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Chenmei Tang & Jian Pan & Deqing Zhu & Zhengqi Guo & Congcong Yang & Siwei Li, 2024. "Optimizing Combustion Efficiency in Blast Furnace Injection: A Sustainable Approach Using Biomass Char and Coal Mixtures," Sustainability, MDPI, vol. 16(14), pages 1-14, July.
    4. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    5. Andrzej Duda & Arkadiusz Fenicki & Patryk Molski & Elżbieta Szostak & Piotr Duda, 2020. "Design and Operation of a Modern Polish Plant for Plastic Waste Recycling through the Degradative Depolymerization Process. A Case Study," Energies, MDPI, vol. 13(24), pages 1-18, December.
    6. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Yingxuan Miao & Yunxuan Zhao & Geoffrey I. N. Waterhouse & Run Shi & Li-Zhu Wu & Tierui Zhang, 2023. "Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Chuanhao Wang & Junjie Du & Lin Zeng & Zhongling Li & Yizhou Dai & Xu Li & Zijun Peng & Wenlong Wu & Hongliang Li & Jie Zeng, 2023. "Direct synthesis of extra-heavy olefins from carbon monoxide and water," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xiaoyan Qiu & Jize Liu & Xinkai Li & Yuyan Wang & Xinxing Zhang, 2024. "Click dechlorination of halogen-containing hazardous plastics towards recyclable vitrimers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    11. Na Li & Bin Huang & Xue Dong & Jinsong Luo & Yi Wang & Hui Wang & Dengyun Miao & Yang Pan & Feng Jiao & Jianping Xiao & Zhenping Qu, 2022. "Bifunctional zeolites-silver catalyst enabled tandem oxidation of formaldehyde at low temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54495-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.