IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032121013216.html
   My bibliography  Save this article

Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid

Author

Listed:
  • Kim, H.
  • Baek, S.
  • Won, W.

Abstract

The utilization of biomass, a bountiful and renewable natural resource, has become increasingly important with respect to climate change and environmental regulation. The conversion of lignocellulosic biomass to 2,5-furandicarboxylic acid (FDCA) is a particularly promising technology that is essential for polyethylene furanoate production, which can replace existing petroleum-derived terephthalic acid. This study presents a new process design for economic FDCA production from lignocellulosic biomass. The economics of the process are maximized by introducing an effective biomass fractionation method based on catalytic conversion and separation subsystems. Pinch analysis coupled with a heat pump was performed to minimize the utility consumption in the process, thereby reducing the heating requirement by 66.3%. Furthermore, the integrative economic feasibility and environmental sustainability of the process were systematically assessed via techno-economic analysis (TEA) and life-cycle assessment (LCA). The TEA determined a minimum FDCA selling price of $1,520/ton that can increase to $5,203/ton given cost growth and performance at the pioneer plant. Moreover, sensitivity analysis identified the principal cost drivers of the process. LCA showed the environmental impact of each subsystem of the process and revealed that exchanging fossil-based electricity sources for renewable sources and technology can lead to a more environmentally friendly process. Integrative process design can provide comprehensive perspectives for decision-makers.

Suggested Citation

  • Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013216
    DOI: 10.1016/j.rser.2021.112059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121013216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    2. Huang, Kefeng & Won, Wangyun & Barnett, Kevin J. & Brentzel, Zachary J. & Alonso, David M. & Huber, George W. & Dumesic, James A. & Maravelias, Christos T., 2018. "Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol," Applied Energy, Elsevier, vol. 213(C), pages 585-594.
    3. Kim, Hyunwoo & Lee, Shinje & Won, Wangyun, 2021. "System-level analyses for the production of 1,6-hexanediol from cellulose," Energy, Elsevier, vol. 214(C).
    4. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
    5. Jisook Lee & Yongho Son & Kwang Soon Lee & Wangyun Won, 2019. "Economic Analysis and Environmental Impact Assessment of Heat Pump-Assisted Distillation in a Gas Fractionation Unit," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2020. "Process integration and optimization for economical production of commodity chemicals from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 162(C), pages 242-248.
    7. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    9. Won, Wangyun & Maravelias, Christos T., 2017. "Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 357-366.
    10. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2021. "Coproduction of butene oligomers and adipic acid from lignocellulosic biomass: Process design and evaluation," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahn, Byeongchan & Park, Chulhwan & Liu, J. Jay & Ok, Yong Sik & Won, Wangyun, 2023. "Maximizing the utilization of lignocellulosic biomass: Process development and analysis," Renewable Energy, Elsevier, vol. 215(C).
    2. Kim, Hyunwoo & Lee, Shinje & Won, Wangyun, 2021. "System-level analyses for the production of 1,6-hexanediol from cellulose," Energy, Elsevier, vol. 214(C).
    3. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2020. "Process integration and optimization for economical production of commodity chemicals from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 162(C), pages 242-248.
    4. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2021. "Coproduction of butene oligomers and adipic acid from lignocellulosic biomass: Process design and evaluation," Energy, Elsevier, vol. 235(C).
    5. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    7. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    8. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Donghui Lv & Ruru Wang & Yu Zhang, 2021. "Sustainability Assessment Based on Integrating EKC with Decoupling: Empirical Evidence from China," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    11. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    12. Xuyao Zhang & Weimin Zhang & Dayu Xu, 2020. "Life Cycle Assessment of Complex Forestry Enterprise: A Case Study of a Forest–Fiberboard Integrated Enterprise," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    13. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    14. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    15. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    16. Beims, R.F. & Simonato, C.L. & Wiggers, V.R., 2019. "Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 521-529.
    17. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    18. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    19. Hao Dong & Taisuke Otsu & Luke Taylor, 2022. "Nonparametric estimation of additive models with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 41(10), pages 1164-1204, November.
    20. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.