Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.04.074
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
- Caliskan, Hakan, 2017. "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 488-492.
- Sami, Samaneh & Etesami, Nasrin & Rahimi, Amir, 2011. "Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results," Energy, Elsevier, vol. 36(5), pages 2847-2855.
- Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Abdenouri, Naji, 2021. "3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer," Renewable Energy, Elsevier, vol. 170(C), pages 1052-1069.
- Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
- Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
- Malakar, Santanu & Arora, Vinkel Kumar & Nema, Prabhat K., 2021. "Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove," Renewable Energy, Elsevier, vol. 168(C), pages 568-580.
- Morad, M.M. & El-Shazly, M.A. & Wasfy, K.I. & El-Maghawry, Hend A.M., 2017. "Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants," Renewable Energy, Elsevier, vol. 101(C), pages 992-1004.
- Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
- Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
- Fudholi, Ahmad & Sopian, Kamaruzzaman & Alghoul, M.A. & Ruslan, Mohd Hafidz & Othman, Mohd Yusof, 2015. "Performances and improvement potential of solar drying system for palm oil fronds," Renewable Energy, Elsevier, vol. 78(C), pages 561-565.
- Tiwari, Sumit & Tiwari, G.N., 2016. "Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer," Energy, Elsevier, vol. 114(C), pages 155-164.
- Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
- Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
- Abderrahman, Mellalou & Abdelaziz, Bacaoui & Abdelkader, Outzourhit, 2022. "Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness," Renewable Energy, Elsevier, vol. 199(C), pages 407-418.
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- Das, Biplab & Mondol, Jayanta Deb & Debnath, Suman & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, A., 2020. "Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation," Renewable Energy, Elsevier, vol. 152(C), pages 567-578.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
- Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
- Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
- Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
- Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
- Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
- Atalay, Halil, 2022. "Exergoeconomic and environmental impact evaluation of wind energy assisted hybrid solar dryer and conventional solar dryer," Renewable Energy, Elsevier, vol. 200(C), pages 1416-1425.
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
- Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
- Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
- Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
- Lehmad, Manal & Hidra, Nawfal & Lhomme, Patrick & Mghazli, Safa & EL Hachimi, Youssef & Abdenouri, Naji, 2024. "Environmental, economic and quality assessment of hybrid solar-electric drying of black soldier fly (Hermetia illucens) larvae," Renewable Energy, Elsevier, vol. 226(C).
- Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Chouicha, Samira & Arıcı, Müslüm & Yunfeng, Wang & Ming, Li & Fang-ling, Fan, 2023. "Drying characteristic, sustainability, and 4E (energy, exergy, and enviro-economic) analysis of dried date fruits using indirect solar-electric dryer: An experimental investigation," Renewable Energy, Elsevier, vol. 218(C).
- Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
- Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
More about this item
Keywords
Solar drying; Greenhouse drying; Two-phase olive pomace; Drying kinetics; 4E analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:229-250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.