IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp407-418.html
   My bibliography  Save this article

Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness

Author

Listed:
  • Abderrahman, Mellalou
  • Abdelaziz, Bacaoui
  • Abdelkader, Outzourhit

Abstract

The present work is focused on the assessment of energy flow (drying efficiency, specific energy consumption, specific moisture extraction rate and moisture extraction rate) in a hybrid greenhouse dryer (solar/hot air) during the thin layer drying of two-phase olive pomace. Three layer thicknesses of the two-phase olive pomace were evaluated in this study, namely 2 cm, 4 cm and 6 cm. Moreover the drying kinetics and effective moisture diffusivity were also investigated. The moisture content of the two-phase olive pomace was reduced from 54 wt% to a value below 20 wt%., which was achieved in 14 h, 32 h and 53 h for three layers thicknesses respectively. The drying process of the two-phase olive pomace occurred in the falling rate and the Two-Term Gaussian model was found to be the most suitable drying model to describe the behavior for the three thin layer thicknesses. The average drying efficiencies of the greenhouse dryer for the three thin layer thicknesses of the two-phase olive pomace were 16.9%, 7.85% and 5.31%, respectively. The specific energy consumption (SEC) was found to be 5.7 kWh/kg, 14.2 kWh/kg and 21.3 kWh/kg for the three drying experiments, respectively, associated to an average specific moisture extraction rate (SMER) values of 0.27 kg/kWh, 0.13 kg/kWh and 0.085 kg/kWh, respectively.

Suggested Citation

  • Abderrahman, Mellalou & Abdelaziz, Bacaoui & Abdelkader, Outzourhit, 2022. "Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness," Renewable Energy, Elsevier, vol. 199(C), pages 407-418.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:407-418
    DOI: 10.1016/j.renene.2022.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irene Montero & María Teresa Miranda & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas & Sergio Nogales, 2015. "Solar Dryer Application for Olive Oil Mill Wastes," Energies, MDPI, vol. 8(12), pages 1-15, December.
    2. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    3. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
    4. Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
    5. Koukouch, Abdelghani & Idlimam, Ali & Asbik, Mohamed & Sarh, Brahim & Izrar, Boujemaa & Bostyn, Stéphane & Bah, Abdellah & Ansari, Omar & Zegaoui, Omar & Amine, Amina, 2017. "Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste," Renewable Energy, Elsevier, vol. 101(C), pages 565-574.
    6. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Isaac, Pilatowsky Figueroa & Rogelio, Brito Orosco, 2020. "Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum)," Renewable Energy, Elsevier, vol. 147(P1), pages 845-855.
    7. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    8. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    2. Benlioğlu, Muhammet Mustafa & Karaağaç, Mehmet Onur & Ergün, Alper & Ceylan, İlhan & Ali, İsmail Hamad Guma, 2023. "A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)," Renewable Energy, Elsevier, vol. 211(C), pages 420-433.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    2. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    4. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    5. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    6. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    7. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    8. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    9. Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
    10. Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
    11. Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.
    12. Prakash, Om & Laguri, Vinod & Pandey, Anukul & Kumar, Anil & Kumar, Arbind, 2016. "Review on various modelling techniques for the solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 396-417.
    13. Mejdi Jeguirim & Patrick Dutournié & Antonis A. Zorpas & Lionel Limousy, 2017. "Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics," Energies, MDPI, vol. 10(9), pages 1-16, September.
    14. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    15. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    16. Khaled A. Metwally & Awad Ali Tayoush Oraiath & I. M. Elzein & Tamer M. El-Messery & Claude Nyambe & Mohamed Metwally Mahmoud & Mohamed Anwer Abdeen & Ahmad A. Telba & Usama Khaled & Abderrahmane Bero, 2024. "The Mathematical Modeling, Diffusivity, Energy, and Enviro-Economic Analysis (MD3E) of an Automatic Solar Dryer for Drying Date Fruits," Sustainability, MDPI, vol. 16(8), pages 1-29, April.
    17. Fine, Jamie P. & Dworkin, Seth B. & Friedman, Jacob, 2019. "A methodology for predicting hybrid solar panel performance in different operating modes," Renewable Energy, Elsevier, vol. 130(C), pages 1198-1206.
    18. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    19. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
    20. Fuqiang Qiu & Baoguo Li & Taoping Xu & Dugui He, 2022. "Drying behavior and mathematical modeling of Tenebrio molitor using a closed system heat pump dryer [Evaluation of Tenebrio molitor larvae as an alternative food source]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 841-849.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:407-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.