IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i5p457-465.html
   My bibliography  Save this article

Mathematical modeling of thin layer solar drying of sultana grapes

Author

Listed:
  • Yaldiz, Osman
  • Ertekin, Can
  • Uzun, H.Ibrahim

Abstract

Thin layer solar drying experiments were conducted for Sultana grapes (cv. Thompson seedless) grown in Antalya, Turkey. An indirect forced convection solar dryer consisting of a solar air heater and a drying cabinet was used in the experiments. Air heated by the solar air heater was forced through the product by an electric fan. In order to examine the effect of drying air temperature and velocity on a thin layer drying of Sultana grapes, twenty-two experiments were performed. Eight different thin layer mathematical drying models were compared according to their coefficient of determination to estimate solar drying curves. The effects of drying air temperature and velocity on the model constants and coefficients were predicted by the regression models. According to the results, a two-term drying model could satisfactorily describe the solar drying curve of Sultana grapes with a correlation coefficient (r) of 0.979. The constants and coefficients of this model could be explained by the effect of drying air temperature and velocity.

Suggested Citation

  • Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:5:p:457-465
    DOI: 10.1016/S0360-5442(01)00018-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544201000184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00018-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiris, Cigdem & Ozbalta, Necdet & Tiris, Mustafa & Dincer, Ibrahim, 1994. "Performance of a solar dryer," Energy, Elsevier, vol. 19(9), pages 993-997.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    2. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    3. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    4. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    5. Singh, S.P. & Jairaj, K.S. & Srikant, K., 2012. "Universal drying rate constant of seedless grapes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6295-6302.
    6. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:5:p:457-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.