IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2847-2855.html
   My bibliography  Save this article

Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results

Author

Listed:
  • Sami, Samaneh
  • Etesami, Nasrin
  • Rahimi, Amir

Abstract

In the present study, using a previously developed dynamic mathematical model for performance analysis of an indirect cabinet solar dryer [1], a microscopic energy and exergy analysis for an indirect solar cabinet dryer is carried out. To this end, appropriate energy and exergy models are developed and using the predicted values for temperature and enthalpy of gas stream and the temperature, enthalpy and moisture content of the drying solid, the energy and exergy efficiencies are estimated. The validity of the model for predicting variations in gas and solid characteristics along the time and the length of the solar collector and/or dryer length was examined against some existing experimental data. The results show that in spite of high energy efficiency, the indirect solar cabinet dryer has relatively low exergy efficiency. Results show that the maximum exergy losses are in midday. Also the minimums of total exergy efficiency are 32.3% and 47.2% on the first and second days, respectively. Furthermore, the effect of some operating parameters, including length of the collector, its surface, and air flow rate was investigated on the exergy destruction and efficiency.

Suggested Citation

  • Sami, Samaneh & Etesami, Nasrin & Rahimi, Amir, 2011. "Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results," Energy, Elsevier, vol. 36(5), pages 2847-2855.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2847-2855
    DOI: 10.1016/j.energy.2011.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koroneos, Christopher & Spachos, Thomas & Moussiopoulos, Nikolaos, 2003. "Exergy analysis of renewable energy sources," Renewable Energy, Elsevier, vol. 28(2), pages 295-310.
    2. Niksiar, Arezou & Rahimi, Amir, 2009. "Energy and exergy analysis for cocurrent gas spray cooling systems based on the results of mathematical modeling and simulation," Energy, Elsevier, vol. 34(1), pages 14-21.
    3. Karamarkovic, Rade & Karamarkovic, Vladan, 2010. "Energy and exergy analysis of biomass gasification at different temperatures," Energy, Elsevier, vol. 35(2), pages 537-549.
    4. Kim, Y.M. & Favrat, D., 2010. "Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system," Energy, Elsevier, vol. 35(1), pages 213-220.
    5. Dissa, A.O. & Bathiebo, J. & Kam, S. & Savadogo, P.W. & Desmorieux, H. & Koulidiati, J., 2009. "Modelling and experimental validation of thin layer indirect solar drying of mango slices," Renewable Energy, Elsevier, vol. 34(4), pages 1000-1008.
    6. Fadare, D.A. & Nkpubre, D.O. & Oni, A.O. & Falana, A. & Waheed, M.A. & Bamiro, O.A., 2010. "Energy and exergy analyses of malt drink production in Nigeria," Energy, Elsevier, vol. 35(12), pages 5336-5346.
    7. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    8. Lohani, S.P., 2010. "Energy and exergy analysis of fossil plant and heat pump building heating system at two different dead-state temperatures," Energy, Elsevier, vol. 35(8), pages 3323-3331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaudhri, Kapil & Bhagoria, J.L. & Kumar, Vikash, 2022. "Transverse wedge-shaped rib roughened solar air heater (SAH) - Exergy based experimental investigation," Renewable Energy, Elsevier, vol. 184(C), pages 1150-1164.
    2. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    3. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    4. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    5. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    6. Ohijeagbon, Idehai O. & Waheed, M. Adekojo & Jekayinfa, Simeon O., 2013. "Methodology for the physical and chemical exergetic analysis of steam boilers," Energy, Elsevier, vol. 53(C), pages 153-164.
    7. Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
    8. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    9. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
    10. Vásquez, José & Reyes, Alejandro & Pailahueque, Nicolás, 2019. "Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system," Renewable Energy, Elsevier, vol. 139(C), pages 1375-1390.
    11. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    12. Abiodun A. Okunola & Timothy A. Adekanye & Clinton E. Okonkwo & Mohammad Kaveh & Mariusz Szymanek & Endurance O. Idahosa & Adeniyi T. Olayanju & Krystyna Wojciechowska, 2023. "Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam ( Dioscorea alata ) in a Hot Air Dryer," Energies, MDPI, vol. 16(4), pages 1-21, February.
    13. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2016. "Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate," Renewable Energy, Elsevier, vol. 96(PA), pages 233-243.
    14. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    15. Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
    16. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    17. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    18. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    19. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    20. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
    21. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    22. H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.
    23. Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.
    24. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
    25. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    2. Szabó, Gábor L. & Kalmár, Ferenc, 2019. "Investigation of energy and exergy performances of radiant cooling systems in buildings – A design approach," Energy, Elsevier, vol. 185(C), pages 449-462.
    3. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).
    4. Rawat, Rahul & Lamba, Ravita & Kaushik, S.C., 2017. "Thermodynamic study of solar photovoltaic energy conversion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 630-638.
    5. Gakkhar, Nikhil & Soni, M.S. & Jakhar, Sanjeev, 2016. "Second law thermodynamic study of solar assisted distillation system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 519-535.
    6. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    7. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    8. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    9. Adrian K. James & Ronald W. Thring & Steve Helle & Harpuneet S. Ghuman, 2012. "Ash Management Review—Applications of Biomass Bottom Ash," Energies, MDPI, vol. 5(10), pages 1-18, October.
    10. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    11. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    12. Lamnatou, Chr. & Papanicolaou, E. & Belessiotis, V. & Kyriakis, N., 2010. "Finite-volume modelling of heat and mass transfer during convective drying of porous bodies – Non-conjugate and conjugate formulations involving the aerodynamic effects," Renewable Energy, Elsevier, vol. 35(7), pages 1391-1402.
    13. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    14. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    15. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    16. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2010. "Effects of meteorological variables on exergetic efficiency of wind turbine power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3237-3241, December.
    18. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2017. "Exergy analysis of a solar-powered vacuum membrane distillation unit using two models," Energy, Elsevier, vol. 120(C), pages 872-883.
    19. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    20. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2847-2855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.