IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipds0960148124019487.html
   My bibliography  Save this article

Non-noble Co supported on beta framework for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to renewable biofuel 2,5-dimethylfuran

Author

Listed:
  • Wang, Zhongrui
  • Ma, Yulin
  • Chen, Lei
  • Yan, Tingyu
  • Shang, Ningzhao
  • Li, Huiliang
  • Han, Yunan
  • Liu, Xue

Abstract

Selective transformation of biomass platform molecule 5-hydroxymethylfurfural (HMF) into biofuel 2,5-dimethylfuran (DMF) through hydrogenolysis path has attracted significant attention in the field of biomass catalytic conversion. In general, this process required supported noble catalysts under elevated temperature (423–533 K) and enough H2 pressure (1–4 MPa). Herein, Co/Beta-DA catalysts with various Co loadings of 5–20 wt% were post-synthesized through wet impregnation. Benefiting from the relatively open channel systems and strong metal-support interactions, the obtained 10Co/Beta-DA with ∼10 wt% Co contents facilitated the hydrogenation of C=O bonds and the cleavage of C-O bonds, which was efficient for the selective hydrogenolysis from HMF to DMF (Conv.HMF ≥ 99.9 %, Sel.DMF ≥ 99.9 %) under mild reaction conditions (H2 pressure, 1.0 MPa; temp., 423 K; time, 3 h). The innovative strategy of designing and preparing rational non-noble impregnated zeolite provided brand-new perspectives to solve the problems of high cost and harsh reaction conditions in the HMF hydrogenolysis process, which has the potential to convert biomass into renewable liquid fuels.

Suggested Citation

  • Wang, Zhongrui & Ma, Yulin & Chen, Lei & Yan, Tingyu & Shang, Ningzhao & Li, Huiliang & Han, Yunan & Liu, Xue, 2024. "Non-noble Co supported on beta framework for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to renewable biofuel 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 237(PD).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019487
    DOI: 10.1016/j.renene.2024.121880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
    2. Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    4. Feng, Li & Li, Xuhao & Lin, Yinhe & Liang, Yicong & Chen, Yuning & Zhou, Wen, 2020. "Catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ru based catalyst: Effects of process parameters on conversion and products selectivity," Renewable Energy, Elsevier, vol. 160(C), pages 261-268.
    5. Avelino Corma & Laszlo T. Nemeth & Michael Renz & Susana Valencia, 2001. "Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations," Nature, Nature, vol. 412(6845), pages 423-425, July.
    6. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    7. Shao, Yuewen & Guo, Mingzhu & Fan, Mengjiao & Sun, Kai & Gao, Guoming & Li, Chao & Kontchouo, Félix Mérimé Bkangmo & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2023. "Importance of oxyphilic FeNi alloy in NiFeAl catalysts for selective conversion of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 208(C), pages 105-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
    2. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    3. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.
    4. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    5. Jiheon Jun & Yi-Feng Su & James R. Keiser & John E. Wade & Michael D. Kass & Jack R. Ferrell & Earl Christensen & Mariefel V. Olarte & Dino Sulejmanovic, 2022. "Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    6. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    8. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    10. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    11. Huang, Rulu & Liu, Huai & Zhang, Junhua & Cheng, Yuan & He, Liang & Peng, Lincai, 2022. "Tea polyphenol and HfCl4 Co-doped polyacrylonitrile nanofiber for highly efficient transformation of levulinic acid to γ-valerolactone," Renewable Energy, Elsevier, vol. 200(C), pages 234-243.
    12. Mariusz Wądrzyk & Jakub Katerla & Rafał Janus & Marek Lewandowski & Marek Plata & Łukasz Korzeniowski, 2024. "High-Energy-Density Hydrochar and Bio-Oil from Hydrothermal Processing of Spent Coffee Grounds—Experimental Investigation," Energies, MDPI, vol. 17(24), pages 1-18, December.
    13. Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).
    14. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Sapillado, Gilda & Zhang, Yuanhui & Summers, Sabrina & Ribeiro, Rogers & Tommaso, Giovana, 2024. "Energy recovery of residual yeast via hydrothermal liquefaction with multi-cycle reuse of the post-HTL wastewater and subsequent anaerobic digestion," Renewable Energy, Elsevier, vol. 236(C).
    16. Djukić-Vuković, A. & Mladenović, D. & Ivanović, J. & Pejin, J. & Mojović, L., 2019. "Towards sustainability of lactic acid and poly-lactic acid polymers production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 238-252.
    17. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    18. Mariusz Wądrzyk & Łukasz Korzeniowski & Marek Plata & Rafał Janus & Marek Lewandowski & Grzegorz Borówka & Przemysław Maziarka, 2023. "Solvothermal Liquefaction of Blackcurrant Pomace in the Water-Monohydroxy Alcohol Solvent System," Energies, MDPI, vol. 16(3), pages 1-15, January.
    19. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    20. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.