IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp357-366.html
   My bibliography  Save this article

Natural lignocellulose welded Zr–Al bimetallic hybrids for the sustainable conversion of xylose to alkyl levulinate

Author

Listed:
  • Peng, Lincai
  • Huangfu, Xin
  • Liu, Yao
  • Liu, Huai
  • Zhang, Junhua

Abstract

The processing of C6 sugars to alkyl levulinate (AL), a versatile biomass-derived building block, can be readily implemented via the straightforward acid-catalyzed reaction in alcohol medium while it remains a challenge to produce AL from C5 sugars in the one-pot procedure over a monolithic catalyst. In this contribution, a budget and multifunctional natural lignocellulose welded Zr–Al bimetallic hybrid (ZrAl@CS-MSA) has been successfully constructed with crude corn stalk as a sustainable support. The becoming Lewis and Brønsted acid sites of ZrAl@CS-MSA catalyst guarantee a high AL yield of 54.3% from xylose via a one-pot process in a renewable n-butanol medium. Experimental findings revealed that the sulfonic group of ZrAl@CS-MSA plays a significant role in the xylose dehydration, furfuryl alcohol etherification and alcoholysis reactions while Zr species is in charge of the transfer hydrogenation of furfural. The Al species enclosed in ZrAl@CS-MSA can regulate its Brønsted and Lewis acidity, accelerating the etherification and alcoholysis reactions as well as alleviating the over hydrogenation of AL. This work opens a green, sustainable and reliable avenue for producing C5 sugar-based AL using natural lignocellulose-related multifunctional catalysts.

Suggested Citation

  • Peng, Lincai & Huangfu, Xin & Liu, Yao & Liu, Huai & Zhang, Junhua, 2022. "Natural lignocellulose welded Zr–Al bimetallic hybrids for the sustainable conversion of xylose to alkyl levulinate," Renewable Energy, Elsevier, vol. 193(C), pages 357-366.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:357-366
    DOI: 10.1016/j.renene.2022.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    2. Tang, Xing & Zeng, Xianhai & Li, Zheng & Hu, Lei & Sun, Yong & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2014. "Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 608-620.
    3. Tang, Xing & Wei, Junnan & Ding, Ning & Sun, Yong & Zeng, Xianhai & Hu, Lei & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2017. "Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 287-296.
    4. He, Jian & Li, Hu & Xu, Yufei & Yang, Song, 2020. "Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions," Renewable Energy, Elsevier, vol. 146(C), pages 359-370.
    5. Zuo, Miao & Jia, Wenlong & Feng, Yunchao & Zeng, Xianhai & Tang, Xing & Sun, Yong & Lin, Lu, 2021. "Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent," Renewable Energy, Elsevier, vol. 164(C), pages 23-33.
    6. Amarasekara, Ananda S. & Gutierrez Reyes, Cristian D., 2019. "Brønsted acidic ionic liquid catalyzed one-pot conversion of cellulose to furanic biocrude and identification of the products using LC-MS," Renewable Energy, Elsevier, vol. 136(C), pages 352-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yingying & Guo, Haixin & Qi, Xinhua, 2024. "One-pot assembly of sulfated lignin/Zr coordination polymer for efficient alcoholysis of furfuryl alcohol to methyl levulinate," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
    2. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    3. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    4. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    5. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    6. Torres-Olea, Benjamín & Fúnez-Núñez, Inmaculada & García-Sancho, Cristina & Cecilia, Juan Antonio & Moreno-Tost, Ramón & Maireles-Torres, Pedro, 2023. "Influence of Lewis and Brønsted acid catalysts in the transformation of hexoses into 5-ethoxymethylfurfural," Renewable Energy, Elsevier, vol. 207(C), pages 588-600.
    7. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    8. Bora, Akash Pratim & Dhawane, Sumit H. & Anupam, Kumar & Halder, Gopinath, 2018. "Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst," Renewable Energy, Elsevier, vol. 121(C), pages 195-204.
    9. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    11. Austine Ofondu Chinomso Iroegbu & Suprakas Sinha Ray, 2021. "Bamboos: From Bioresource to Sustainable Materials and Chemicals," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    12. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    15. Yu, Zhihao & Lu, Xuebin & Liu, Chen & Han, Yiwen & Ji, Na, 2019. "Synthesis of γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 140-157.
    16. Anagnostopoulou, Eleni & Lilas, Panagiotis & Diamantopoulou, Perikleia & Fakas, Christos & Krithinakis, Ioannis & Patatsi, Eleni & Gabrielatou, Elpida & van Muyden, Antoine P. & Dyson, Paul J. & Papad, 2022. "Hydrogenation of the pivotal biorefinery platform molecule levulinic acid into renewable fuel γ-valerolactone catalyzed by unprecedented highly active and stable ruthenium nanoparticles in aqueous med," Renewable Energy, Elsevier, vol. 192(C), pages 35-45.
    17. Bureros, Glorie Mae A. & Tanjay, April A. & Cuizon, Dan Elmer S. & Go, Alchris W. & Cabatingan, Luis K. & Agapay, Ramelito C. & Ju, Yi-Hsu, 2019. "Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 138(C), pages 489-501.
    18. Mendaros, Czarina M. & Go, Alchris W. & Nietes, Winston Jose T. & Gollem, Babe Eden Joy O. & Cabatingan, Luis K., 2020. "Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 152(C), pages 320-330.
    19. Hussein, Ahmed Kadhim, 2015. "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 460-476.
    20. Soltani, Soroush & Rashid, Umer & Yunus, Robiah & Taufiq-Yap, Yun Hin & Al-Resayes, Saud Ibrahim, 2016. "Post-functionalization of polymeric mesoporous C@Zn core–shell spheres used for methyl ester production," Renewable Energy, Elsevier, vol. 99(C), pages 1235-1243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:357-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.