IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp618-626.html
   My bibliography  Save this article

Preparation of biochar-based photothermal superhydrophobic coating based on corn straw biogas residue and blade anti-icing performance by wind tunnel test

Author

Listed:
  • Liu, Zhiyuan
  • Li, Yan
  • Sun, Yong
  • Feng, Fang
  • Tagawa, Kotaro

Abstract

The utilization of biological resources is conducive to alleviating energy shortages and environmental pollution, and the application of biochar to anti-icing can promote green low-carbon cycle development. In this study, the ice-phobic coating with a photothermal effect was prepared from biogas residue after anaerobic digestion. The modification and Fe3O4 loading promoted the formation of the rough structure of the material and reduced the hydrophilic groups, thus increasing the contact angle of the prepared photothermal coating to 154.49°. The rough structure of the biochar-based photothermal superhydrophobic coating effectively decreased the contact area between the coating and the ice, significantly reducing the icing adhesion strength to 71.96 kPa. The Fe3O4-loaded biochar material had an extremely high light absorption capacity, which rapidly increased the surface temperature of the coating to 48.2 °C. This was attributed to the photothermal properties of the Fe3O4 particles, which enhanced the photothermal conversion performance of the photothermal coating. Icing wind tunnel experiments showed that the maximum reduction in icing mass and icing area of coated blades were 39.13% and 13.48%, respectively, compared to uncoated blades, indicating that the coating had a good anti-icing effect. The biochar-based ice-phobic coating had fine acid and alkali resistance and durability. This study provided a method for anti-icing civil and industrial material surfaces.

Suggested Citation

  • Liu, Zhiyuan & Li, Yan & Sun, Yong & Feng, Fang & Tagawa, Kotaro, 2023. "Preparation of biochar-based photothermal superhydrophobic coating based on corn straw biogas residue and blade anti-icing performance by wind tunnel test," Renewable Energy, Elsevier, vol. 210(C), pages 618-626.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:618-626
    DOI: 10.1016/j.renene.2023.04.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Jing & Song, Bingliang, 2017. "Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades," Renewable Energy, Elsevier, vol. 113(C), pages 706-712.
    2. Guo, Peng & Infield, David, 2021. "Wind turbine blade icing detection with multi-model collaborative monitoring method," Renewable Energy, Elsevier, vol. 179(C), pages 1098-1105.
    3. Liu, Hongbo & Wang, Xingkang & Fang, Yueying & Lai, Wenjia & Xu, Suyun & Lichtfouse, Eric, 2022. "Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar," Renewable Energy, Elsevier, vol. 188(C), pages 465-475.
    4. Sun, Lingyun & Yin, Jiemin & Bilal, Ahmad Raza, 2023. "Green financing and wind power energy generation: Empirical insights from China," Renewable Energy, Elsevier, vol. 206(C), pages 820-827.
    5. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    6. Li, Xia & Huang, Yongmei & Gong, Jirui & Zhang, Xinshi, 2010. "A study of the development of bio-energy resources and the status of eco-society in China," Energy, Elsevier, vol. 35(11), pages 4451-4456.
    7. Liu, Shu-Hui & You, Shang-Sian & Lin, Chi-Wen & Cheng, Yu-Shen, 2022. "Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation," Renewable Energy, Elsevier, vol. 199(C), pages 1318-1328.
    8. Tong, Guoqiang & Li, Yan & Tagawa, Kotaro & Feng, Fang, 2023. "Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation," Energy, Elsevier, vol. 265(C).
    9. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    10. Li, Hui & Wu, Zixuan & Yuan, Xing & Yang, Yixuan & He, Xiaoqiang & Duan, Huiming, 2022. "The research on modeling and application of dynamic grey forecasting model based on energy price-energy consumption-economic growth," Energy, Elsevier, vol. 257(C).
    11. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yan & Yu, Yue & Zhu, Ailing & Fu, Junjie & Xia, Yaping & Lan, Guoxing & Fu, Chuan & Ma, Zhicheng & Xue, Jianfu & Tao, Lin & Xie, Xinrui, 2024. "Effect of different digestate biochars as promoters via sludge anaerobic digestion on subsequent pyrolysis products: Focusing on the nitrogen, sulfur, and chlorine releasing characteristics," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Zhongqiu & Guo, Wenfeng & Li, Yan & Tagawa, Kotaro, 2023. "Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition," Renewable Energy, Elsevier, vol. 209(C), pages 42-52.
    2. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    3. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    5. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Zhiwei Liao & Bowen Wang & Wenjuan Tao & Ye Liu & Qiyun Hu, 2024. "Research on Decision Optimization and the Risk Measurement of the Power Generation Side Based on Quantile Data-Driven IGDT," Energies, MDPI, vol. 17(7), pages 1-21, March.
    7. Rasmus Dovnborg Frederiksen & Grzegorz Bocewicz & Grzegorz Radzki & Zbigniew Banaszak & Peter Nielsen, 2024. "Cost-Effectiveness of Predictive Maintenance for Offshore Wind Farms: A Case Study," Energies, MDPI, vol. 17(13), pages 1-24, June.
    8. Chen Han & Lu Yang, 2024. "Financing and Management Strategies for Expanding Green Development Projects: A Case Study of Energy Corporation in China’s Renewable Energy Sector Using Machine Learning (ML) Modeling," Sustainability, MDPI, vol. 16(11), pages 1-33, May.
    9. Sánchez-Ávila, N. & Cardarelli, Alessandro & Carmona-Cabello, Miguel & Dorado, M.P. & Pinzi, Sara & Barbanera, Marco, 2024. "Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 230(C).
    10. Wendong Zhang & Yang Cao & Zhong Qian & Jian Wang & Yixian Zhu & Yanan Yang & Yujie Wang & Guoqing Wu, 2024. "Research on Aerodynamic Performance of Asynchronous-Hybrid Dual-Rotor Vertical-Axis Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-22, September.
    11. Wang, Mingsen & Zhong, Daojun & Ali, Sajid & Meo, Muhammad Saeed, 2024. "The windfall of green finance: Advancing environmental sustainability through wind energy," Renewable Energy, Elsevier, vol. 227(C).
    12. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    13. Yao, Zeng-Yu & Qi, Jian-Hua & Yin, Li-Ming, 2013. "Biodiesel production from Xanthoceras sorbifolia in China: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 57-65.
    14. Yan Li & Ce Sun & Yu Jiang & Fang Feng, 2019. "Scaling Method of the Rotating Blade of a Wind Turbine for a Rime Ice Wind Tunnel Test," Energies, MDPI, vol. 12(4), pages 1-15, February.
    15. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    16. Shen, Zhuang & Gong, Shuguang & Zu, Hongxiao & Guo, Weiyu, 2024. "Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM," Energy, Elsevier, vol. 299(C).
    17. Tong, Guoqiang & Yang, Shengbing & Li, Yan & Feng, Fang, 2023. "Effects of blade tip flow on aerodynamic characteristics of straight-bladed vertical axis wind turbines," Energy, Elsevier, vol. 283(C).
    18. Li, Jinglin & Lin, Li & Ju, Tongyao & Meng, Fanzhi & Han, Siyu & Chen, Kailun & Jiang, Jianguo, 2024. "Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Mohan, Revu Krishna & Sarojini, Jajimoggala & Ağbulut, Ümit & Rajak, Upendra & Verma, Tikendra Nath & Reddy, K. Thirupathi, 2023. "Energy recovery from waste plastic oils as an alternative fuel source and comparative assessment of engine characteristics at varying fuel injection timings," Energy, Elsevier, vol. 275(C).
    20. Ullah, Zia & Zeshan,, 2024. "Effect of catholyte on performance of photosynthetic microbial fuel cell for wastewater treatment and energy recovery," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:618-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.