IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223014007.html
   My bibliography  Save this article

Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies

Author

Listed:
  • Chen, Xue
  • Lyu, Jinxin
  • Sun, Chuang
  • Xia, Xinlin
  • Wang, Fuqiang

Abstract

Pore-scale flow and heat transfer model is built for a volumetric solar receiver subjected to highly concentrated irradiation, in order to provide insight into the detailed thermal and hydrodynamic performance. Direct three-dimensional simulations on the coupled radiation-convection-conduction are performed based on the Weaire-Phelan structure which is used to represent the open-cell ceramic foam absorber. The energy conversion characteristics with two ceramic materials (SiC and Al2O3) are firstly predicted and compared. And then several cases focused on the control approaches for the optical property (absorption/reflection/emission) of the solar absorber are introduced and investigated, including gradient surface absorptivity, spectral selectivity, and combination design of semi-transparent and opaque configuration. The results show that a moderate volumetric effect can be achieved at very low inlet fluid velocity for both ceramic materials, however presenting low conversion efficiency. Increasing the inlet velocity could enlarge the thermal non-equilibrium between solid and fluid phases and lower the outlet temperature. SiC absorber shows improved performance compared to Al2O3 absorber, and the efficiency changes obviously with the inlet velocity, while a variation of 24% is found. The optical property of the absorber front region significantly affects the overall performance. Decreasing absorptivity design and spectral selective design both show positive impact, especially for the Al2O3 absorber with an increment by 33% in efficiency relative to the basic one. Among the different strategies, spectral selective improvement shows the best effectiveness. Besides, adding porous fused silica as the front absorber layer can effectively move the high-temperature area inward at a cost of small decrement in efficiency, herein, honeycomb structure shows preponderance compared to the foam silica.

Suggested Citation

  • Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014007
    DOI: 10.1016/j.energy.2023.128006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakakura, Mitsuho & Matsubara, Koji & Cho, Hyun-Seok & Kodama, Tatsuya & Gokon, Nobuyuki & Bellan, Selvan & Yoshida, Kazuo, 2017. "Buoyancy-opposed volumetric solar receiver with beam-down optics irradiation," Energy, Elsevier, vol. 141(C), pages 2337-2350.
    2. Gomez-Garcia, Fabrisio & González-Aguilar, José & Olalde, Gabriel & Romero, Manuel, 2016. "Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 648-658.
    3. Du, Shen & Li, Ming-Jia & Ren, Qinlong & Liang, Qi & He, Ya-Ling, 2017. "Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver," Energy, Elsevier, vol. 140(P1), pages 1267-1275.
    4. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    5. Zhu, Qibin & Xuan, Yimin, 2019. "Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics," Energy, Elsevier, vol. 172(C), pages 467-476.
    6. Capuano, Raffaele & Fend, Thomas & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2017. "Optimized volumetric solar receiver: Thermal performance prediction and experimental validation," Renewable Energy, Elsevier, vol. 114(PB), pages 556-566.
    7. Du, Shen & Xia, Tian & He, Ya-Ling & Li, Zeng-Yao & Li, Dong & Xie, Xiang-Qian, 2020. "Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution," Applied Energy, Elsevier, vol. 275(C).
    8. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    9. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    10. Li, Xiao-Lei & Xia, Xin-Lin & Sun, Chuang & Chen, Zhi-Hao, 2021. "Performance analysis on a volumetric solar receiver with an annular inner window," Renewable Energy, Elsevier, vol. 170(C), pages 487-499.
    11. Remo Schäppi & David Rutz & Fabian Dähler & Alexander Muroyama & Philipp Haueter & Johan Lilliestam & Anthony Patt & Philipp Furler & Aldo Steinfeld, 2022. "Drop-in fuels from sunlight and air," Nature, Nature, vol. 601(7891), pages 63-68, January.
    12. Ndiogou, Baye A. & Thiam, Ababacar & Mbow, Cheikh & Stouffs, Pascal & Azilinon, Dorothé, 2019. "Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle," Energy, Elsevier, vol. 166(C), pages 519-529.
    13. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    14. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam," Energy, Elsevier, vol. 200(C).
    15. Avila-Marin, Antonio L. & Alvarez de Lara, Monica & Fernandez-Reche, Jesus, 2018. "Experimental results of gradual porosity volumetric air receivers with wire meshes," Renewable Energy, Elsevier, vol. 122(C), pages 339-353.
    16. Atkinson, Carol & Sansom, Chris L. & Almond, Heather J. & Shaw, Chris P., 2015. "Coatings for concentrating solar systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 113-122.
    17. Nakakura, Mitsuho & Matsubara, Koji & Bellan, Selvan & Kodama, Tatsuya, 2020. "Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)," Renewable Energy, Elsevier, vol. 146(C), pages 1143-1152.
    18. Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).
    19. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    20. Yao, Haichen & Liu, Xianglei & Luo, Qingyang & Xu, Qiao & Tian, Yang & Ren, Tianze & Zheng, Hangbin & Gao, Ke & Dang, Chunzhuo & Xuan, Yimin & Liu, Zhan & Yang, Xiaohu & Ding, Yulong, 2022. "Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices," Applied Energy, Elsevier, vol. 320(C).
    21. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    22. Ali, Mahmoud & Rady, Mohamed & Attia, Mohamed A.A. & Ewais, Emad M.M., 2020. "Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers," Renewable Energy, Elsevier, vol. 145(C), pages 1849-1861.
    23. Huang, Haodong & Lin, Meng, 2021. "Optimization of solar receivers for high-temperature solar conversion processes: Direct vs. Indirect illumination designs," Applied Energy, Elsevier, vol. 304(C).
    24. Zhang, Ke & Hao, Lei & Du, Miao & Mi, Jing & Wang, Ji-Ning & Meng, Jian-ping, 2017. "A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1282-1299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdavifar, Mehdi & Roozshenas, Ali Akbar & Miri, Rohaldin, 2023. "Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities," Energy, Elsevier, vol. 283(C).
    2. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    2. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    3. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    4. Vishwa Deepak Kumar & Vikas K. Upadhyay & Gurveer Singh & Sudipto Mukhopadhyay & Laltu Chandra, 2022. "Open volumetric air receiver: An innovative application and a major challenge," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    5. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    6. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    7. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
    8. Zhou-Qiao Dai & Xu Ma & Xin-Yuan Tang & Ren-Zhong Zhang & Wei-Wei Yang, 2023. "Solar-Thermal-Chemical Integrated Design of a Cavity-Type Solar-Driven Methane Dry Reforming Reactor," Energies, MDPI, vol. 16(6), pages 1-21, March.
    9. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    10. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    11. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    12. Pratticò, Luca & Fronza, Nicola & Bartali, Ruben & Chiappini, Andrea & Sciubba, Enrico & González-Aguilar, J. & Crema, Luigi, 2021. "Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis," Renewable Energy, Elsevier, vol. 180(C), pages 482-493.
    13. Du, Shen & Xia, Tian & He, Ya-Ling & Li, Zeng-Yao & Li, Dong & Xie, Xiang-Qian, 2020. "Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution," Applied Energy, Elsevier, vol. 275(C).
    14. Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).
    15. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    17. Nakakura, Mitsuho & Matsubara, Koji & Bellan, Selvan & Kodama, Tatsuya, 2020. "Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)," Renewable Energy, Elsevier, vol. 146(C), pages 1143-1152.
    18. Chen, Sheng & Li, Wenhao & Yan, Fuwu, 2020. "Thermal performance analysis of a porous solar cavity receiver," Renewable Energy, Elsevier, vol. 156(C), pages 558-569.
    19. Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
    20. Cheilytko, Andrii & Schwarzbözl, Peter & Wieghardt, Kai, 2023. "Modeling of heat conduction processes in porous absorber of open type of solar tower stations," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.