IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp47-62.html
   My bibliography  Save this article

Multi-objective optimization of a solar driven trigeneration system

Author

Listed:
  • Bellos, Evangelos
  • Tzivanidis, Christos

Abstract

The objective of this study is to optimize a solar driven trigeneration system under various optimization criteria. More specifically, parabolic trough collectors are selected to feed with heat the generator of a trigeneration system. The produced vapor is expanded in a turbine where electricity is produced. The system also includes an ejector device, a condenser where the heating is produced and an evaporator where the cooling is produced. The cooling load is produced at 10 °C and the heating load at 50 °C, typical temperature levels for building applications, as hotels. This system is optimized under steady-state conditions with different criteria which are based on the exergetic, energetic and economic performance. The optimization is performed separately with every criterion, as well as with combined goals performing multi-objective optimization procedures. Different criteria lead to different optimum system designs. According to the final results, using all the examined criteria together, the optimum system presents 11.26% exergy efficiency, 87.39% energy efficiency and 7.694 €/h energy savings cash flow. The electricity, cooling and heating productions are 4.6 kW, 7.1 kW and 59.4 kW respectively. These results are obtained for turbine pressure ratio 3.6, turbine inlet temperature 195.5 °C and R141b as working fluid.

Suggested Citation

  • Bellos, Evangelos & Tzivanidis, Christos, 2018. "Multi-objective optimization of a solar driven trigeneration system," Energy, Elsevier, vol. 149(C), pages 47-62.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:47-62
    DOI: 10.1016/j.energy.2018.02.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218302822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Padilla, Ricardo Vasquez & Too, Yen Chean Soo & Benito, Regano & McNaughton, Robbie & Stein, Wes, 2016. "Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector," Applied Energy, Elsevier, vol. 169(C), pages 49-62.
    2. Hendricks, Aaron M. & Wagner, John E. & Volk, Timothy A. & Newman, David H. & Brown, Tristan R., 2016. "A cost-effective evaluation of biomass district heating in rural communities," Applied Energy, Elsevier, vol. 162(C), pages 561-569.
    3. Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
    4. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    5. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    6. Kouta, Amine & Al-Sulaiman, Fahad A. & Atif, Maimoon, 2017. "Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system," Energy, Elsevier, vol. 119(C), pages 996-1009.
    7. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    8. Moradi, Mehrdad & Mehrpooya, Mehdi, 2017. "Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower," Energy, Elsevier, vol. 130(C), pages 530-543.
    9. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    10. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    11. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    12. Amin, U. & Hossain, M.J. & Lu, J. & Fernandez, E., 2017. "Performance analysis of an experimental smart building: Expectations and outcomes," Energy, Elsevier, vol. 135(C), pages 740-753.
    13. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
    2. Datas, A. & Ramos, A. & del Cañizo, C., 2019. "Techno-economic analysis of solar PV power-to-heat-to-power storage and trigeneration in the residential sector," Applied Energy, Elsevier, vol. 256(C).
    3. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    4. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    5. Muhammad Tauseef Nasir & Michael Chukwuemeka Ekwonu & Yoonseong Park & Javad Abolfazli Esfahani & Kyung Chun Kim, 2021. "Assessment of a District Trigeneration Biomass Powered Double Organic Rankine Cycle as Primed Mover and Supported Cooling," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    7. Angelo Algieri & Pietropaolo Morrone & Sergio Bova, 2020. "Techno-Economic Analysis of Biofuel, Solar and Wind Multi-Source Small-Scale CHP Systems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    8. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    9. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    10. Jesús García-Domínguez & J. Daniel Marcos, 2021. "Thermodynamic Analysis and Systematic Comparison of Solar-Heated Trigeneration Systems Based on ORC and Absorption Heat Pump," Energies, MDPI, vol. 14(16), pages 1-20, August.
    11. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    12. Fahad Awjah Almehmadi & H. F. Elattar & A. Fouda & Saeed Alqaed & Jawed Mustafa & Mathkar A. Alharthi & H. A. Refaey, 2022. "Energy Performance Assessment of a Novel Solar Poly-Generation System Using Various ORC Working Fluids in Residential Buildings," Energies, MDPI, vol. 15(21), pages 1-25, November.
    13. Su, Zixiang & Yang, Liu, 2022. "Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment," Renewable Energy, Elsevier, vol. 197(C), pages 1115-1132.
    14. Saeed Alqaed & Ali Fouda & Hassan F. Elattar & Jawed Mustafa & Fahad Awjah Almehmadi & Hassanein A. Refaey & Mathkar A. Alharthi, 2022. "Performance Evaluation of a Solar Heat-Driven Poly-Generation System for Residential Buildings Using Various Arrangements of Heat Recovery Units," Energies, MDPI, vol. 15(22), pages 1-26, November.
    15. Evangelos Bellos & Christos Tzivanidis, 2020. "Parametric Investigation of a Trigeneration System with an Organic Rankine Cycle and Absorption Heat Pump Driven by Parabolic Trough Collectors for the Building Sector," Energies, MDPI, vol. 13(7), pages 1-26, April.
    16. Saeed Esfandi & Simin Baloochzadeh & Mohammad Asayesh & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Amir Arsalan Rabanian & Biplab Das & Vitor A. F. Costa & Afshin Davarpanah, 2020. "Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas," Energies, MDPI, vol. 13(23), pages 1-27, December.
    17. Rezapour, Mojtaba & Gholizadeh, Mohammad, 2021. "Analysis of methanol thermochemical reactor with volumetric solar heat flux based on Parabolic Trough Concentrator," Renewable Energy, Elsevier, vol. 180(C), pages 1088-1100.
    18. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    19. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    20. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    21. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    22. Shi, Xuhang & Song, Jintao & Cheng, Ziming & Liang, Huaxu & Dong, Yan & Wang, Fuqiang & Zhang, Wenjing, 2023. "Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency," Renewable Energy, Elsevier, vol. 207(C), pages 436-446.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    3. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    5. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    6. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.
    7. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    8. Miri, Seyedeh Mohadeseh & Farzaneh-Gord, Mahmood & Kianifar, Ali, 2023. "Triple-objective MPSO of zeotropic-fluid solar ejector cycle integrated with cold storage tank based on techno-economic criteria," Energy, Elsevier, vol. 283(C).
    9. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    10. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi, 2018. "A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 513-527.
    11. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    12. Evangelos Bellos & Christos Tzivanidis, 2017. "Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors," Energies, MDPI, vol. 10(7), pages 1-31, June.
    13. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
    14. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    15. Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
    16. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    17. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Lee, Yee-Ting & Hong, Sihui & Chien, Liang-Han & Lin, Chih-Jer & Yang, An-Shik, 2020. "Heat transfer and pressure drop of film condensation in a horizontal minitube for HFO1234yf refrigerant," Applied Energy, Elsevier, vol. 274(C).
    19. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    20. Varga, Szabolcs & Oliveira, Armando C. & Palmero-Marrero, Anna & Vrba, Jakub, 2017. "Preliminary experimental results with a solar driven ejector air conditioner in Portugal," Renewable Energy, Elsevier, vol. 109(C), pages 83-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:47-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.