IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v601y2022i7891d10.1038_s41586-021-04174-y.html
   My bibliography  Save this article

Drop-in fuels from sunlight and air

Author

Listed:
  • Remo Schäppi

    (ETH Zurich)

  • David Rutz

    (ETH Zurich)

  • Fabian Dähler

    (ETH Zurich)

  • Alexander Muroyama

    (ETH Zurich)

  • Philipp Haueter

    (ETH Zurich)

  • Johan Lilliestam

    (Institute for Advanced Sustainability Studies (IASS)
    University of Potsdam)

  • Anthony Patt

    (ETH Zurich)

  • Philipp Furler

    (ETH Zurich
    Synhelion SA)

  • Aldo Steinfeld

    (ETH Zurich)

Abstract

Aviation and shipping currently contribute approximately 8% of total anthropogenic CO2 emissions, with growth in tourism and global trade projected to increase this contribution further1–3. Carbon-neutral transportation is feasible with electric motors powered by rechargeable batteries, but is challenging, if not impossible, for long-haul commercial travel, particularly air travel4. A promising solution are drop-in fuels (synthetic alternatives for petroleum-derived liquid hydrocarbon fuels such as kerosene, gasoline or diesel) made from H2O and CO2 by solar-driven processes5–7. Among the many possible approaches, the thermochemical path using concentrated solar radiation as the source of high-temperature process heat offers potentially high production rates and efficiencies8, and can deliver truly carbon-neutral fuels if the required CO2 is obtained directly from atmospheric air9. If H2O is also extracted from air10, feedstock sourcing and fuel production can be colocated in desert regions with high solar irradiation and limited access to water resources. While individual steps of such a scheme have been implemented, here we demonstrate the operation of the entire thermochemical solar fuel production chain, from H2O and CO2 captured directly from ambient air to the synthesis of drop-in transportation fuels (for example, methanol and kerosene), with a modular 5 kWthermal pilot-scale solar system operated under field conditions. We further identify the research and development efforts and discuss the economic viability and policies required to bring these solar fuels to market.

Suggested Citation

  • Remo Schäppi & David Rutz & Fabian Dähler & Alexander Muroyama & Philipp Haueter & Johan Lilliestam & Anthony Patt & Philipp Furler & Aldo Steinfeld, 2022. "Drop-in fuels from sunlight and air," Nature, Nature, vol. 601(7891), pages 63-68, January.
  • Handle: RePEc:nat:nature:v:601:y:2022:i:7891:d:10.1038_s41586-021-04174-y
    DOI: 10.1038/s41586-021-04174-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04174-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04174-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Ting & Li, Ran & Li, Xin, 2023. "Bi-level multi-objective robust optimization for performance improvements in integrated energy system with solar fuel production," Renewable Energy, Elsevier, vol. 219(P1).
    2. Wang, Hongsheng & Liu, Tong & Kong, Hui, 2024. "Solar CO2 splitting coupling with PV, photon-enhanced thermionic emission cell and SOEC for efficient full-spectrum utilization in a wide temperature range," Applied Energy, Elsevier, vol. 367(C).
    3. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    4. Zhao, Yi & Hagi, Hayato & Delahaye, Bruno & Maréchal, François, 2024. "A holistic approach to refinery decarbonization based on atomic, energy and exergy flow analysis," Energy, Elsevier, vol. 296(C).
    5. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    6. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    7. Guene Lougou, Bachirou & Wu, Lianxuan & Ma, Danni & Geng, Boxi & Jiang, Boshu & Han, Donmei & Zhang, Hao & Łapka, Piotr & Shuai, Yong, 2023. "Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions," Energy, Elsevier, vol. 271(C).
    8. Akba, Tufan & Baker, Derek & Mengüç, M. Pınar, 2023. "Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate," Renewable Energy, Elsevier, vol. 203(C), pages 741-752.
    9. Jiang, Boshu & Guene Lougou, Bachirou & Zhang, Hao & Geng, Boxi & Wu, Lianxuan & Shuai, Yong, 2022. "Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting," Applied Energy, Elsevier, vol. 328(C).
    10. Shi, Xuhang & Song, Jintao & Cheng, Ziming & Liang, Huaxu & Dong, Yan & Wang, Fuqiang & Zhang, Wenjing, 2023. "Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency," Renewable Energy, Elsevier, vol. 207(C), pages 436-446.
    11. Liu, YongXiang & Yan, Jian & Xie, XinYi & Peng, YouDuo & Nie, DuZhong, 2023. "Improving the energy distribution uniformity of solar dish collector system under tracking error using a cavity receiver position adjustment method," Energy, Elsevier, vol. 278(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:601:y:2022:i:7891:d:10.1038_s41586-021-04174-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.