IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009716.html
   My bibliography  Save this article

Thermoelectric system investigation with the combination of solar concentration, greenhouse and radiative cooling for all-day power generation

Author

Listed:
  • Yang, Zhenning
  • Wang, Fuqiang
  • Fu, Zhichang
  • Dong, Yan
  • Zou, Huichuan
  • Chen, Xudong
  • Yan, Yuying
  • Zhang, Shuai

Abstract

Thermoelectric generator (TEG) can utilize solar heating to generate electricity without any fossil fuel consumption. However, conventional solar driven TEG fails to achieve high efficiency power generation for 24-h, due to the losing of solar concentration at the hot end and additional cooling capability at the cold end. Therefore, a novel TEG system with the combination of solar concentration, greenhouse and radiative cooling is proposed. With the aim to significantly increase the temperature of hot end, a dish-type concentrator is introduced to concentrate solar radiation and a greenhouse seals up heat. Radiative cooling panel is used to decrease the temperature of cold end, which can realize temperature differences of TEG at night. The eight-day outdoor experimental test indicates that the thermoelectric system achieves a maximum temperature difference of 47.5 °C and a voltage output of 1293.8 mV. The system attains the average power outputs of 3.6 W/m2 on sunny and 0.16 W/m2 on cloudy. Moreover, even at the nights of high humidity and low temperature, the system also achieves a maximum power output of 0.08 W/m2, which can enable continuous power generation throughout the day. This innovative TEG system presents a viable strategy for powering small-scale devices in remote areas.

Suggested Citation

  • Yang, Zhenning & Wang, Fuqiang & Fu, Zhichang & Dong, Yan & Zou, Huichuan & Chen, Xudong & Yan, Yuying & Zhang, Shuai, 2024. "Thermoelectric system investigation with the combination of solar concentration, greenhouse and radiative cooling for all-day power generation," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009716
    DOI: 10.1016/j.renene.2024.120903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.