IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp605-616.html
   My bibliography  Save this article

Computational analysis of passive strategies to reduce thermal stresses in vertical tubular solar receivers for safety direct steam generation

Author

Listed:
  • Maytorena, V.M.
  • Hinojosa, J.F.

Abstract

When exposed to high non-uniform heat fluxes on the receiving surface, significant temperature gradients develop in the tubes, producing thermal stress and deformations in the receivers. This paper reports a detailed investigation of the thermal and structural performance of a solar tower system that operates with direct steam generation tubes when the fins are added to the internal surface and thickness varies. Six tubes were evaluated, two without fins varying the wall thickness (5 mm and 3 mm) and four with fins under different configurations. The thermal system corresponds to a representative tube of an external tubular receiver of a central tower system. The thermal receiver operates with direct steam generation under a non-uniform concentrated solar flux with a maximum value of 0.93 MW/m2. The best configuration of the tube was with fins on the frontal surface of the tube, maintaining a receiving wall thickness of 3 mm and an adiabatic wall thickness of 5 mm. It could reduce maximum thermal gradients and temperature by 31% and 14%, respectively, maximum thermal stresses by 38%, and maintain vapor mass flow at the output (276 kg/h).

Suggested Citation

  • Maytorena, V.M. & Hinojosa, J.F., 2023. "Computational analysis of passive strategies to reduce thermal stresses in vertical tubular solar receivers for safety direct steam generation," Renewable Energy, Elsevier, vol. 204(C), pages 605-616.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:605-616
    DOI: 10.1016/j.renene.2023.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
    2. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    3. Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
    4. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    5. Muhammad Khurram Khan, 2020. "Technological advancements and 2020," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(1), pages 1-2, January.
    6. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    7. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    8. Zhang, Liang & Yu, Zitao & Fan, Liwu & Wang, Wujun & Chen, Huan & Hu, Yacai & Fan, Jianren & Ni, Mingjiang & Cen, Kefa, 2013. "An experimental investigation of the heat losses of a U-type solar heat pipe receiver of a parabolic trough collector-based natural circulation steam generation system," Renewable Energy, Elsevier, vol. 57(C), pages 262-268.
    9. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    10. Chen, Yuxuan & Wang, Ding & Zou, Chongzhe & Gao, Wei & Zhang, Yanping, 2022. "Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions," Energy, Elsevier, vol. 246(C).
    11. Du, Shen & Wang, Zexiao & Shen, Sheng, 2022. "Thermal and structural evaluation of composite solar receiver tubes for Gen3 concentrated solar power systems," Renewable Energy, Elsevier, vol. 189(C), pages 117-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    4. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    5. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    6. Mohamed Allam & Mohamed Tawfik & Maher Bekheit & Emad El-Negiry, 2022. "Experimental Investigation on Performance Enhancement of Parabolic Trough Concentrator with Helical Rotating Shaft Insert," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    7. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    8. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    9. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    10. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    11. Wang, Yinfeng & Lu, Beibei & Chen, Haijun & Fan, Hongtu & Taylor, Robert A. & Zhu, Yuezhao, 2017. "Experimental investigation of the thermal performance of a horizontal two-phase loop thermosiphon suitable for solar parabolic trough receivers operating at 200–400 °C," Energy, Elsevier, vol. 132(C), pages 289-304.
    12. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    13. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    14. Hanane Ait Lahoussine Ouali & Ahmed Alami Merrouni & Shahariar Chowdhury & Kuaanan Techato & Sittiporn Channumsin & Nasim Ullah, 2022. "Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco," Energies, MDPI, vol. 15(22), pages 1-20, November.
    15. Kurşun, Burak, 2019. "Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes," Renewable Energy, Elsevier, vol. 140(C), pages 816-827.
    16. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    17. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    18. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
    19. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    20. Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:605-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.