IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v132y2017icp289-304.html
   My bibliography  Save this article

Experimental investigation of the thermal performance of a horizontal two-phase loop thermosiphon suitable for solar parabolic trough receivers operating at 200–400 °C

Author

Listed:
  • Wang, Yinfeng
  • Lu, Beibei
  • Chen, Haijun
  • Fan, Hongtu
  • Taylor, Robert A.
  • Zhu, Yuezhao

Abstract

A horizontal two-phase loop thermosiphon (HLTS) has been developed as a potential receiver for parabolic trough collectors (PTCs). The design consists of an evaporator (which is horizontally arranged), a condenser, a riser, and a downcomer with a U-turn. This HLTS was designed to push to higher temperatures than previous HLTS studies (200–400 °C) by using Dowtherm A as the working fluid. An indoor experimental prototype was built to investigate its heat transfer performance. Three regimes: start-up, transition and steady operation were analyzed. A unique feature of this design, the U-turn compensation tube, was shown be helpful during the transition and steady operation regimes since it forms a liquid seal to avoid bidirectional flow in the loop. However, solidification of the working fluid in the U-turn section was found to adversely impact the start-up regime in the case of cold (e.g. frozen) initial conditions. The system was tested up to a heat flux value 11.22 kW/m2. The thermal resistance and the two-phase heat transfer coefficient were demonstrated to be considerably better than prior literature. Moreover, the present HLTS was shown to be theoretically limited to 85.6 kW/m2, thus demonstrating that this type of system can meet the needs of intermediate temperature PTC receivers.

Suggested Citation

  • Wang, Yinfeng & Lu, Beibei & Chen, Haijun & Fan, Hongtu & Taylor, Robert A. & Zhu, Yuezhao, 2017. "Experimental investigation of the thermal performance of a horizontal two-phase loop thermosiphon suitable for solar parabolic trough receivers operating at 200–400 °C," Energy, Elsevier, vol. 132(C), pages 289-304.
  • Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:289-304
    DOI: 10.1016/j.energy.2017.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    2. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    3. Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
    4. Aurousseau, Antoine & Vuillerme, Valéry & Bezian, Jean-Jacques, 2016. "Control systems for direct steam generation in linear concentrating solar power plants – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 611-630.
    5. Serrano-Aguilera, J.J. & Valenzuela, L. & Parras, L., 2014. "Thermal 3D model for Direct Solar Steam Generation under superheated conditions," Applied Energy, Elsevier, vol. 132(C), pages 370-382.
    6. Jafari, Davoud & Franco, Alessandro & Filippeschi, Sauro & Di Marco, Paolo, 2016. "Two-phase closed thermosyphons: A review of studies and solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 575-593.
    7. Nkwetta, Dan Nchelatebe & Smyth, Mervyn, 2012. "Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors," Applied Energy, Elsevier, vol. 98(C), pages 22-32.
    8. El Fadar, A. & Mimet, A. & Pérez-García, M., 2009. "Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe," Renewable Energy, Elsevier, vol. 34(10), pages 2271-2279.
    9. Zhang, Liang & Yu, Zitao & Fan, Liwu & Wang, Wujun & Chen, Huan & Hu, Yacai & Fan, Jianren & Ni, Mingjiang & Cen, Kefa, 2013. "An experimental investigation of the heat losses of a U-type solar heat pipe receiver of a parabolic trough collector-based natural circulation steam generation system," Renewable Energy, Elsevier, vol. 57(C), pages 262-268.
    10. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Huicong & Zhang, Jie & Li, Yuehao & Liu, Hao & Wang, Yinfeng & Li, Guiqiang & Zhu, Yuezhao, 2023. "Heat transfer and two-phase flow of a metal foam enhanced horizontal loop thermosyphon for high power solar thermal applications," Energy, Elsevier, vol. 283(C).
    2. Kai Zhang & Haichuan Jin, 2022. "Heat Transfer Enhancement Using Micro Porous Structured Surfaces," Energies, MDPI, vol. 15(9), pages 1-14, April.
    3. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    4. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    5. Chen, Kailun & Meng, Zhaoming & Yan, Changqi & Fan, Guangming & Ding, Tao, 2018. "Experimental study on start-up and steady state characteristics of passive residual heat removal system for 2 MW molten salt reactor," Energy, Elsevier, vol. 147(C), pages 826-838.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    4. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    5. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    6. Wang, Yinfeng & Yang, Li & Wang, Xiaoyuan & Chen, Haijun & Fan, Hongtu & Taylor, Robert A. & Zhu, Yuezhao, 2017. "CFD simulation of an intermediate temperature, two-phase loop thermosiphon for use as a linear solar receiver," Applied Energy, Elsevier, vol. 207(C), pages 36-44.
    7. Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
    8. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    9. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    11. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    12. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    14. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    15. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    16. Li, C. & Wang, R.Z. & Wang, L.W. & Li, T.X. & Chen, Y., 2013. "Experimental study on an adsorption icemaker driven by parabolic trough solar collector," Renewable Energy, Elsevier, vol. 57(C), pages 223-233.
    17. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    18. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    19. Muñoz-Anton, J. & Biencinto, M. & Zarza, E. & Díez, L.E., 2014. "Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid," Applied Energy, Elsevier, vol. 135(C), pages 373-381.
    20. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:132:y:2017:i:c:p:289-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.