Enhanced optical absorption and solar steam generation of CB-ATO hybrid nanofluids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.08.150
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Xingyu & Zhou, Ping & Yan, Hongjie & Chen, Meijie, 2021. "Systematically investigating solar absorption performance of plasmonic nanoparticles," Energy, Elsevier, vol. 216(C).
- Hadi Ghasemi & George Ni & Amy Marie Marconnet & James Loomis & Selcuk Yerci & Nenad Miljkovic & Gang Chen, 2014. "Solar steam generation by heat localization," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
- Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
- Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
- Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
- Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
- Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
- Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Jikang & Zhang, Yuanting & Zhang, Weichen & Qiu, Yu & Li, Qing, 2022. "Design and evaluation of a lab-scale tungsten receiver for ultra-high-temperature solar energy harvesting," Applied Energy, Elsevier, vol. 327(C).
- Xiao, Yang & Bao, Yanqiong & Yu, Linfeng & Zheng, Xiong & Qin, Guangzhao & Chen, Meijie & He, Maogang, 2023. "Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications," Energy, Elsevier, vol. 273(C).
- Xiao, Yang & Tian, Wenshuang & Yu, Linfeng & Chen, Meijie & Zheng, Xiong & Qin, Guangzhao, 2024. "Tunable optical properties of ATO-CuO hybrid nanofluids and the application as spectral beam splitters," Energy, Elsevier, vol. 289(C).
- Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
- Hani Alahmadi & Mohammed Omar Alkinidri, 2023. "Exploring the Impact of Nanomaterials on Heat- and Mass-Transfer Properties of Carreau-Yasuda Fluid with Gyrotactic Bioconvection Peristaltic Phenomena," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
- Zhou, Zhaozixuan & Gong, Junyao & Zhang, Chunhua & Tang, Wenyang & Wei, Bangyang & Wang, Jiandong & Fu, Zhuan & Li, Li & Li, Wenbin & Xia, Liangjun, 2023. "Hierarchically porous carbonized Pleurotus eryngii based solar steam generator for efficient wastewater purification," Renewable Energy, Elsevier, vol. 216(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
- Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
- Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).
- Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
- Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
- Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Li, Zhijing & Lei, Hui & Mu, Zijun & Zhang, Yuan & Zhang, Jingquan & Zhou, Yigang & Xie, Huaqing & Yu, Wei, 2022. "Reduced graphene oxide composite fiber for solar-driven evaporation and seawater desalination," Renewable Energy, Elsevier, vol. 191(C), pages 932-942.
- Yang, Rui & Niu, Dong & Pu, Jin Huan & Tang, G.H. & Wang, Xinyu & Du, Mu, 2022. "Passive all-day freshwater harvesting through a transparent radiative cooling film," Applied Energy, Elsevier, vol. 325(C).
- Keroglou, I. & Tsoutsos, T., 2024. "Optimal siting of solar desalination plants in Crete, Greece employing a GIS/MCDM approach," Renewable Energy, Elsevier, vol. 224(C).
- Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
- Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
- Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
- Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
- Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
- Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
- Purohit, Nilesh & Jakhar, Sanjeev & Gullo, Paride & Dasgupta, Mani Sankar, 2018. "Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion," Renewable Energy, Elsevier, vol. 120(C), pages 14-22.
- Liu, Jian & Wang, Fuxian & Zhang, Long & Fang, Xiaoming & Zhang, Zhengguo, 2014. "Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications," Renewable Energy, Elsevier, vol. 63(C), pages 519-523.
More about this item
Keywords
Carbon black; Antimony doped tin oxide; Hybrid nanofluids; Solar steam generation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:509-516. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.