IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp932-942.html
   My bibliography  Save this article

Reduced graphene oxide composite fiber for solar-driven evaporation and seawater desalination

Author

Listed:
  • Li, Zhijing
  • Lei, Hui
  • Mu, Zijun
  • Zhang, Yuan
  • Zhang, Jingquan
  • Zhou, Yigang
  • Xie, Huaqing
  • Yu, Wei

Abstract

Solar-driven evaporation is a promising technology for freshwater production. However, traditional photothermal materials mainly focus on the issues of energy efficiency and versatility. The high cost of materials and the deterioration of solid material properties caused by salt accumulation hinder severely restricting industrialization. To solve these problems, a kind of flexible non-woven fabric loaded with reducing graphene oxide (RGO@fabric) is designed and prepared in this paper, which can remove the salts formed by evaporation through a simple washing process to clean and recycle the fabric. A bridge-shaped evaporation system is designed and established to form a co-evaporation mode on the upper and lower sides while avoiding heat loss to bulk seawater. Under the simulated sunlight (1.0 kW m−2), a high evaporation rate of 1.54 kg m−2 h−1 and a high evaporation efficiency of 97.83% are obtained. The outdoor solar evaporation experiment under natural sunlight shows that the average evaporation rate of RGO@fabric is 1.10 kg m−2 h−1. RGO@fabric provides a new way for low-cost, high-efficiency, large-scale solar seawater desalination because of superior solar thermal conversion performance and high evaporation rate.

Suggested Citation

  • Li, Zhijing & Lei, Hui & Mu, Zijun & Zhang, Yuan & Zhang, Jingquan & Zhou, Yigang & Xie, Huaqing & Yu, Wei, 2022. "Reduced graphene oxide composite fiber for solar-driven evaporation and seawater desalination," Renewable Energy, Elsevier, vol. 191(C), pages 932-942.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:932-942
    DOI: 10.1016/j.renene.2022.04.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li Ding & Libo Li & Yanchang Liu & Yi Wu & Zong Lu & Junjie Deng & Yanying Wei & Jürgen Caro & Haihui Wang, 2020. "Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater," Nature Sustainability, Nature, vol. 3(4), pages 296-302, April.
    2. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    3. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    4. Fang, Wei & Zhao, Lei & He, Xuan & Chen, Hui & Li, Weixin & Zeng, Xianghui & Chen, Xiaodong & Shen, Yue & Zhang, Wenhao, 2020. "Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation," Renewable Energy, Elsevier, vol. 151(C), pages 1067-1075.
    5. Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
    6. Peng Tao & George Ni & Chengyi Song & Wen Shang & Jianbo Wu & Jia Zhu & Gang Chen & Tao Deng, 2018. "Solar-driven interfacial evaporation," Nature Energy, Nature, vol. 3(12), pages 1031-1041, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Huawei & Zhang, Jiazhen & Pei, Maoqing & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Optical, electrical, and thermal performance enhancement for a concentrating photovoltaic/thermal system using optimized polynomial compound parabolic concentrators," Applied Energy, Elsevier, vol. 358(C).
    2. Ge, Fangqing & Fei, Liang & Chen, Xin & Yin, Yunjie & Wang, Chaoxia, 2023. "Light-colored solar-driven PANI/polyacrylonitrile fiber with low-temperature resistance for wearable heater," Renewable Energy, Elsevier, vol. 206(C), pages 949-959.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Long & Deng, Daxiang & Zhu, Linye & Wang, Huimin & Zhang, Zhenkun & Yao, Yingxue, 2023. "Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation," Energy, Elsevier, vol. 273(C).
    2. Cai, Wei & Pan, Ying & Feng, Xiaming & Mu, Xiaowei & Hu, Weizhao & Song, Lei & Wang, Xin & Hu, Yuan, 2022. "Cicada wing-inspired solar transmittance enhancement and hydrophobicity design for graphene-based solar steam generation: A novel gas phase deposition approach," Applied Energy, Elsevier, vol. 320(C).
    3. Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
    4. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    5. Chen, Yanjun & Fu, Shijin & Tao, Qinghe & Liu, Xiuliang & Li, Changzheng & He, Deqiang, 2024. "Experimental study of electric field enhancing the vapor production of the solar interfacial evaporator," Renewable Energy, Elsevier, vol. 220(C).
    6. Qu, Dan & Cheng, Lekai & Bao, Yanqiong & Gao, Yingxv & Zheng, Xiong & Qin, Guangzhao, 2022. "Enhanced optical absorption and solar steam generation of CB-ATO hybrid nanofluids," Renewable Energy, Elsevier, vol. 199(C), pages 509-516.
    7. Keroglou, I. & Tsoutsos, T., 2024. "Optimal siting of solar desalination plants in Crete, Greece employing a GIS/MCDM approach," Renewable Energy, Elsevier, vol. 224(C).
    8. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    9. Yujun Gou & Jia Han & Yida Li & Yi Qin & Qingan Li & Xiaohui Zhong, 2022. "Research on Anti-Icing Performance of Graphene Photothermal Superhydrophobic Surface for Wind Turbine Blades," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    12. Yi Zhou & Tianpeng Ding & Jun Guo & Guoqiang Xu & Mingqiang Cheng & Chen Zhang & Xiao-Qiao Wang & Wanheng Lu & Wei Li Ong & Jiangyu Li & Jiaqing He & Cheng-Wei Qiu & Ghim Wei Ho, 2023. "Giant polarization ripple in transverse pyroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
    15. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    16. Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Li, Jiyan & Long, Yong & Jing, Yanju & Zhang, Jiaqing & Du, Silu & Jiao, Rui & Sun, Hanxue & Zhu, Zhaoqi & Liang, Weidong & Li, An, 2024. "Superhydrophobic multi-shell hollow microsphere confined phase change materials for solar photothermal conversion and energy storage," Applied Energy, Elsevier, vol. 365(C).
    18. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:932-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.