IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i11p2407-2415.html
   My bibliography  Save this article

On the estimation of thermal resistance in borehole thermal conductivity test

Author

Listed:
  • Marcotte, D.
  • Pasquier, P.

Abstract

Sizing of ground-coupled loop heat exchangers (GLHE) depends on the ground thermal conductivity and capacity, and the borehole thermal resistance. One popular method to estimate the thermal parameters is the interpretation of in situ thermal response tests. The modeled response is Tm=(Tin+Tout)/2, the average temperature of the fluid entering and leaving the ground. The Tm response corresponds to the physically unrealistic hypothesis of constant heat flux along a borehole. Using a 3D finite element model of the borehole, we show that Tm does not correspond to the fluid mean temperature within the borehole. Accordingly, with Tm, an overestimation of the borehole thermal resistance results. The resistance overestimation has a noticeable economic impact. We propose instead a new estimator we name “p-linear” average of Tin and Tout with parameter p→-1, as determined by numerical simulations. We show that the p-linear average closely fits the average fluid temperature computed with the numerical model, hence avoiding bias in estimation of borehole thermal resistance. Finally, we discuss the problem of collinearity arising in the estimation of thermal parameters.

Suggested Citation

  • Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2407-2415
    DOI: 10.1016/j.renene.2008.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108000372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2407-2415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.