Design and development of a new static mixing bioreactor for enzymatic bioprocess: Application in biodiesel production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.08.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ibrahim Yildiz & Hakan Caliskan & Kazutoshi Mori, 2020. "Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine," Energy & Environment, , vol. 31(8), pages 1303-1317, December.
- Aghababaie, Marzieh & Beheshti, Masoud & Razmjou, Amir & Bordbar, Abdol-Khalegh, 2019. "Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil," Renewable Energy, Elsevier, vol. 140(C), pages 104-110.
- Gong, Haitao & Gao, Lili & Nie, Kaili & Wang, Meng & Tan, Tianwei, 2020. "A new reactor for enzymatic synthesis of biodiesel from waste cooking oil: A static-mixed reactor pilot study," Renewable Energy, Elsevier, vol. 154(C), pages 270-277.
- Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
- Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
- Wang, Meng & Nie, Kaili & Yun, Feng & Cao, Hao & Deng, Li & Wang, Fang & Tan, Tianwei, 2015. "Biodiesel with low temperature properties: Enzymatic synthesis of fusel alcohol fatty acid ester in a solvent free system," Renewable Energy, Elsevier, vol. 83(C), pages 1020-1025.
- Vishal, Devesh & Dubey, Shivesh & Goyal, Rahul & Dwivedi, Gaurav & Baredar, Prashant & Chhabra, Mayank, 2020. "Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance," Renewable Energy, Elsevier, vol. 158(C), pages 167-180.
- Loh, Jun Mann & Amelia, & Gourich, Wail & Chew, Chien Lye & Song, Cher Pin & Chan, Eng-Seng, 2021. "Improved biodiesel production from sludge palm oil catalyzed by a low-cost liquid lipase under low-input process conditions," Renewable Energy, Elsevier, vol. 177(C), pages 348-358.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
- Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
- Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
- Ng, Wei Zhe & Chan, Eng-Seng & Gourich, Wail & Ooi, Chien Wei & Tey, Beng Ti & Song, Cher Pin, 2023. "Perspective on enzymatic production of renewable hydrocarbon fuel using algal fatty acid photodecarboxylase from Chlorella variabilis NC64A: Potentials and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
- Yahya, Syahirah & Muhamad Wahab, Syamsul Kamar & Harun, Farah Wahida, 2020. "Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology," Renewable Energy, Elsevier, vol. 157(C), pages 164-172.
- Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
- Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
- Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
- Khozeymeh Nezhad, Marziyeh & Aghaei, Hamidreza, 2021. "Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil," Renewable Energy, Elsevier, vol. 164(C), pages 876-888.
- Kadir Diler Alemdar & Merve Kayacı Çodur & Muhammed Yasin Codur & Furkan Uysal, 2023. "Environmental Effects of Driver Distraction at Traffic Lights: Mobile Phone Use," Sustainability, MDPI, vol. 15(20), pages 1-12, October.
- Roschat, Wuttichai & Siritanon, Theeranun & Yoosuk, Boonyawan & Sudyoadsuk, Taweesak & Promarak, Vinich, 2017. "Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand," Renewable Energy, Elsevier, vol. 101(C), pages 937-944.
- Suh, Hyun Kyu & Lee, Chang Sik, 2016. "A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1601-1620.
- Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Mia Gotovuša & Ivan Pucko & Marko Racar & Fabio Faraguna, 2022. "Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties," Energies, MDPI, vol. 15(14), pages 1-21, July.
- Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
- Guimarães, José Renato & Fernandez-Lafuente, Roberto & Tardioli, Paulo Waldir, 2022. "Ethanolysis of soybean oil catalyzed by magnetic CLEA of porcine pancreas lipase to produce ecodiesel. Efficient separation of ethyl esters and monoglycerides," Renewable Energy, Elsevier, vol. 198(C), pages 455-462.
- Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Narayanan, Mathiyazhagan, 2024. "Promising biorefinery products from marine macro and microalgal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
More about this item
Keywords
Bioreactor; Static mixing; Interphase; Enzymatic production;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:922-931. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.