IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v182y2023ics1364032123002034.html
   My bibliography  Save this article

Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis

Author

Listed:
  • Tan, Kai Qi
  • Ahmad, Mohd Azmier
  • Oh, Wen Da
  • Low, Siew Chun

Abstract

Plastic waste pollution has grown exponentially since the 1950s. This situation was exacerbated when the volume of personal protective equipment (PPE)-based plastic waste surged after the COVID-19 pandemic. Plastic waste management such as landfills and incineration have adverse effects on the environment and human health due to the leaching of hazardous chemicals and the emission of toxic gases. Modern solutions such as biodegradable plastics and green brick technology are expensive and not well developed to valorize the current accumulation of plastic waste. This has led to the emergence of thermal degradation processes, which is faster and more realistic to solve the PPE-based plastic waste buildup. Pyrolysis and gasification systems to valorize plastic waste into hydrocarbons and fuels are discussed and compared with examples respectively. Scoping review approach is employed to conduct this study. To further increase the value of the final product of plastic waste management, the integrated pyrolysis system to upcycle plastic waste to carbon nanomaterials (CNMs) and the factors affecting the production of non-condensable gases are critically reviewed. The importance of feedstock composition, catalyst type, pyrolysis operating condition (including gas condition and temperature profiles) based on various studies is discussed. The potential and limitation of an integrated pyrolysis system are assessed from kinetic analysis, economic analysis and life-cycle assessment. This review is expected to contribute to the industrial-scale development of sustainable upcycling of plastic waste and enhance the production of desirable gas components for CNM synthesis for environmental sustainability.

Suggested Citation

  • Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002034
    DOI: 10.1016/j.rser.2023.113346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123002034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    2. Murray, Christopher J. L. & Acharya, Arnab K., 1997. "Understanding DALYs," Journal of Health Economics, Elsevier, vol. 16(6), pages 703-730, December.
    3. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Ma, Chuan & Yu, Jie & Wang, Ben & Song, Zijian & Xiang, Jun & Hu, Song & Su, Sheng & Sun, Lushi, 2016. "Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 433-450.
    6. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    7. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Bai, Bin & Liu, Yigang & Wang, Qiuxia & Zou, Jian & Zhang, Hua & Jin, Hui & Li, Xianwen, 2019. "Experimental investigation on gasification characteristics of plastic wastes in supercritical water," Renewable Energy, Elsevier, vol. 135(C), pages 32-40.
    9. Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
    10. José Manuel Riesco-Avila & James R. Vera-Rozo & David A. Rodríguez-Valderrama & Diana M. Pardo-Cely & Bladimir Ramón-Valencia, 2022. "Effects of Heating Rate and Temperature on the Yield of Thermal Pyrolysis of a Random Waste Plastic Mixture," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    11. Zhang, Yu & Ahmad, Muhammad Sajjad & Shen, Boxiong & Yuan, Peng & Shah, Imran Ali & Zhu, Qi & Ibrahim, Muhammad & Bokhari, Awais & Klemeš, Jiří Jaromír & Elkamel, Ali, 2022. "Co-pyrolysis of lychee and plastic waste as a source of bioenergy through kinetic study and thermodynamic analysis," Energy, Elsevier, vol. 256(C).
    12. Rebekka Volk & Christoph Stallkamp & Justus J. Steins & Savina Padumane Yogish & Richard C. Müller & Dieter Stapf & Frank Schultmann, 2021. "Techno‐economic assessment and comparison of different plastic recycling pathways: A German case study," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1318-1337, October.
    13. Kaixin Li & Shao Wee Lee & Guoan Yuan & Junxi Lei & Shengxuan Lin & Piyarat Weerachanchai & Yanhui Yang & Jing-Yuan Wang, 2016. "Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture," Energies, MDPI, vol. 9(6), pages 1-15, June.
    14. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Lam, Su Shiung & Wan Mahari, Wan Adibah & Ok, Yong Sik & Peng, Wanxi & Chong, Cheng Tung & Ma, Nyuk Ling & Chase, Howard A. & Liew, Zhenling & Yusup, Suzana & Kwon, Eilhann E. & Tsang, Daniel C.W., 2019. "Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    2. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    5. Ying-Che Hung & Chien-Hua Ho & Liang-Yü Chen & Shih-Chieh Ma & Te-I Liu & Yi-Chen Shen, 2023. "Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    6. Rajesh Mehta & Milad Golkaram & Jack T. W. E. Vogels & Tom Ligthart & Eugene Someren & Spela Ferjan & Jelmer Lennartz, 2023. "BEVSIM: Battery electric vehicle sustainability impact assessment model," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1266-1276, October.
    7. Foster, William & Azimov, Ulugbek & Gauthier-Maradei, Paola & Molano, Liliana Castro & Combrinck, Madeleine & Munoz, Jose & Esteves, Jaime Jaimes & Patino, Luis, 2021. "Waste-to-energy conversion technologies in the UK: Processes and barriers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Esra’a Amin Al-Athamin & Safwat Hemidat & Husam Al-Hamaiedeh & Salah H. Aljbour & Tayel El-Hasan & Abdallah Nassour, 2021. "A Techno-Economic Analysis of Sustainable Material Recovery Facilities: The Case of Al-Karak Solid Waste Sorting Plant, Jordan," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    9. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    10. Mæstad, Ottar & Norheim, Ole Frithjof, 2009. "Eliciting people's preferences for the distribution of health: A procedure for a more precise estimation of distributional weights," Journal of Health Economics, Elsevier, vol. 28(3), pages 570-577, May.
    11. Hoyle, Aaron & Peters, Jotham & Jaccard, Mark & Rhodes, Ekaterina, 2024. "Additional or accidental? Simulating interactions between a low-carbon fuel standard and other climate policy instruments in Canada," Energy Policy, Elsevier, vol. 185(C).
    12. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    13. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Kim, Jiwon & Park, Chanyeong & Park, Hoyoung & Han, Jeehoon & Lee, Jechan & Kim, Sung-Kon, 2022. "Upcycling of cattle manure for simultaneous energy recovery and supercapacitor electrode production," Energy, Elsevier, vol. 258(C).
    15. Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    16. Hummels, David & Munch, Jakob R. & Xiang, Chong, 2016. "No Pain, No Gain: The Effects of Exports on Effort, Injury, and Illness," IZA Discussion Papers 10036, Institute of Labor Economics (IZA).
    17. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    18. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).
    19. Banri ITO & Tatsufumi YAMAGATA, 2007. "Who Develops Innovations In Medicine For The Poor? Trends In Patent Applications Related To Medicines For Hiv/Aids, Tuberculosis, Malaria, And Neglected Diseases," The Developing Economies, Institute of Developing Economies, vol. 45(2), pages 141-171, June.
    20. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.