IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v158y2020icp167-180.html
   My bibliography  Save this article

Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance

Author

Listed:
  • Vishal, Devesh
  • Dubey, Shivesh
  • Goyal, Rahul
  • Dwivedi, Gaurav
  • Baredar, Prashant
  • Chhabra, Mayank

Abstract

Rubber (Hevea brasilienis) is a plantation crop grown in various regions of India. It is a non-edible oil source and has excellent potential for being a biodiesel feedstock. The major problem with crude rubber seed oil is its high free fatty acid (FFA) content (37.46%). The present study has used the Box-Behnken response surface method to minimize the FFA content of the oil. FFA content of 1.31% was obtained with alcohol to oil molar ratio of 6.652:1 and 0.5 wt% of H2SO4 catalyst at a reaction temperature of 63.75 °C in 50 min. The results of engine testing indicated a decrease in fuel consumption by 50.23% for RB10 and 47.74% for RB20 when compared with neat diesel. The thermal efficiency was reduced by 12.16% for RB10 and 14.74% for RB20. The emission analysis revealed that HC emissions were increased by 22.3% for RB10 and by 41.72% for RB20. There was a decrease in NOx emissions by 21.5% for RB10 and by 21.7% for RB20 while the CO2 emissions were reduced by 46.3% for RB10 and 49.54% for RB20 at full loading. The CO emissions were increased by 25% and 37.5% for RB10 and, respectively, when compared with diesel.

Suggested Citation

  • Vishal, Devesh & Dubey, Shivesh & Goyal, Rahul & Dwivedi, Gaurav & Baredar, Prashant & Chhabra, Mayank, 2020. "Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance," Renewable Energy, Elsevier, vol. 158(C), pages 167-180.
  • Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:167-180
    DOI: 10.1016/j.renene.2020.05.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    2. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    3. Liu, Wenfeng & Zhang, Xingping & Feng, Sida, 2019. "Does renewable energy policy work? Evidence from a panel data analysis," Renewable Energy, Elsevier, vol. 135(C), pages 635-642.
    4. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    5. Leduc, Sylvain & Natarajan, Karthikeyan & Dotzauer, Erik & McCallum, Ian & Obersteiner, Michael, 2009. "Optimizing biodiesel production in India," Applied Energy, Elsevier, vol. 86(Supplemen), pages 125-131, November.
    6. Melvin Jose, D.F. & Edwin Raj, R. & Durga Prasad, B. & Robert Kennedy, Z. & Mohammed Ibrahim, A., 2011. "A multi-variant approach to optimize process parameters for biodiesel extraction from rubber seed oil," Applied Energy, Elsevier, vol. 88(6), pages 2056-2063, June.
    7. Akalpler, Ergin & Hove, Simbarashe, 2019. "Carbon emissions, energy use, real GDP per capita and trade matrix in the Indian economy-an ARDL approach," Energy, Elsevier, vol. 168(C), pages 1081-1093.
    8. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    9. Sandouqa, Arwa & Al-Hamamre, Zayed, 2019. "Energy analysis of biodiesel production from jojoba seed oil," Renewable Energy, Elsevier, vol. 130(C), pages 831-842.
    10. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2005. "Characterization and effect of using rubber seed oil as fuel in the compression ignition engines," Renewable Energy, Elsevier, vol. 30(5), pages 795-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Shuai & Cui, Ziheng & Zhu, Ruisong & Chen, Changjing & Song, Shuyue & Song, Jianting & Wang, Meng & Tan, Tianwei, 2022. "Design and development of a new static mixing bioreactor for enzymatic bioprocess: Application in biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 922-931.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Zhu, Yixin & Xu, Jianchu & Li, Qiaohong & Mortimer, Peter E., 2014. "Investigation of rubber seed yield in Xishuangbanna and estimation of rubber seed oil based biodiesel potential in Southeast Asia," Energy, Elsevier, vol. 69(C), pages 837-842.
    3. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    4. Melvin Jose, D.F. & Edwin Raj, R. & Durga Prasad, B. & Robert Kennedy, Z. & Mohammed Ibrahim, A., 2011. "A multi-variant approach to optimize process parameters for biodiesel extraction from rubber seed oil," Applied Energy, Elsevier, vol. 88(6), pages 2056-2063, June.
    5. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
    6. Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
    7. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    9. Sáez-Bastante, J. & Carmona-Cabello, M. & Pinzi, S. & Dorado, M.P., 2020. "Recycling of kebab restoration grease for bioenergy production through acoustic cavitation," Renewable Energy, Elsevier, vol. 155(C), pages 1147-1155.
    10. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    11. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    12. Ogunkunle, Oyetola & Ahmed, Noor A., 2019. "Performance evaluation of a diesel engine using blends of optimized yields of sand apple (Parinari polyandra) oil biodiesel," Renewable Energy, Elsevier, vol. 134(C), pages 1320-1331.
    13. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    14. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    15. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    16. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    17. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    18. Arumugam, A. & Thulasidharan, D. & Jegadeesan, Gautham B., 2018. "Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel," Renewable Energy, Elsevier, vol. 116(PA), pages 755-761.
    19. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    20. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:167-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.