IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011212.html
   My bibliography  Save this article

The tubular baffled reactor and its potential for the biological methanation of carbon dioxide

Author

Listed:
  • Savvas, Savvas
  • Gangappa, Rajkumar
  • Ni, Xiong-Wei
  • Davies, William
  • Barton, William
  • Thomason, Mark
  • Patterson, Tim
  • Esteves, Sandra R.

Abstract

The biological Power to Methane process (PtM) is gaining ground as an answer to the long-term renewable energy storage problem. Methane is an efficient hydrogen carrier, has an established worldwide transport infrastructure and can serve as a link between renewable power generation and a circular carbon economy. One of the defining factors regarding the scalability of the PtM process is the design of the reactor as it can determine the production rate/energy expenditure ratio. The tubular baffled reactor, a popular reactor design within the chemical industry has been assessed in the present study as a biomethanation reactor for the first time. The experiments were conducted with mixed cultures and the results point to high gas-liquid mass transfer capabilities as indicated by the methanation rates achieved (>90 % CH4 at 270 L/L/d mixed gas input rate). The gas/liquid flow ratio appears to have a stronger effect on methanation than the gas residence time. The working length of the reactor determines the pressure drop experienced by the culture, with higher pressure drops showing a negative correlation to methanogenesis.

Suggested Citation

  • Savvas, Savvas & Gangappa, Rajkumar & Ni, Xiong-Wei & Davies, William & Barton, William & Thomason, Mark & Patterson, Tim & Esteves, Sandra R., 2024. "The tubular baffled reactor and its potential for the biological methanation of carbon dioxide," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011212
    DOI: 10.1016/j.renene.2024.121053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Shuai & Cui, Ziheng & Zhu, Ruisong & Chen, Changjing & Song, Shuyue & Song, Jianting & Wang, Meng & Tan, Tianwei, 2022. "Design and development of a new static mixing bioreactor for enzymatic bioprocess: Application in biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 922-931.
    2. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    3. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    2. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    3. Navarro, J.C. & Baena-Moreno, F.M. & Centeno, M.A. & Laguna, O.H. & Almagro, J.F. & Odriozola, J.A., 2023. "Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    5. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    7. Michael Sterner & Michael Specht, 2021. "Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept," Energies, MDPI, vol. 14(20), pages 1-18, October.
    8. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    9. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    10. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    11. Pan, Guangsheng & Gu, Wei & Chen, Sheng & Lu, Yuping & Zhou, Suyang & Wei, Zhinong, 2021. "Investment equilibrium of an integrated multi–stakeholder electricity–gas–hydrogen system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
    13. Rocio Gonzalez Sanchez & Anatoli Chatzipanagi & Georgia Kakoulaki & Marco Buffi & Sandor Szabo, 2023. "The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production," Energies, MDPI, vol. 16(9), pages 1-28, May.
    14. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2023. "Predictive operation optimization of multi-energy virtual power plant considering behavior uncertainty of diverse stakeholders," Energy, Elsevier, vol. 280(C).
    15. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    16. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    17. Sayama, Shogo & Yamamoto, Seiji, 2022. "A 6-kW thermally self-sustained two-stage CO2 methanation reactor: design and experimental evaluation of steady-state performance under full-load conditions," Applied Energy, Elsevier, vol. 325(C).
    18. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    19. Rishabh Agarwal, 2022. "Economic Analysis of Renewable Power-to-Gas in Norway," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    20. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    Methanation; Power-to-Methane; CO2; Plug-flow; Hydrogenotrophic;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.