IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1258-1268.html
   My bibliography  Save this article

Assessing the prospective environmental performance of hydrogen from high-temperature electrolysis coupled with concentrated solar power

Author

Listed:
  • Puig-Samper, Gonzalo
  • Bargiacchi, Eleonora
  • Iribarren, Diego
  • Dufour, Javier

Abstract

Hydrogen is currently being promoted because of its advantages as an energy vector, its potential to decarbonise the economy, and strategical implications in terms of energy security. Hydrogen from high-temperature electrolysis coupled with concentrated solar power (CSP) is especially interesting since it enhances the last two aspects and could benefit from significant technological progress in the coming years. However, there is a lack of studies assessing its future environmental performance. This work fills this gap by carrying out a prospective life cycle assessment based on the expected values of key performance parameters in 2030. The results show that parabolic trough CSP coupled with a solid oxide electrolyser is a promising solution under environmental aspects. It leads to a prospective hydrogen carbon footprint (1.85 kg CO2 eq/kg H2) which could be classified as low-carbon according to current standards. The benchmarking study for the year 2030 shows that the assessed system significantly decreases the hydrogen carbon footprint compared to future hydrogen from steam methane reforming (81% reduction) and grid electrolysis (51%), even under a considerable penetration of renewable energy sources.

Suggested Citation

  • Puig-Samper, Gonzalo & Bargiacchi, Eleonora & Iribarren, Diego & Dufour, Javier, 2022. "Assessing the prospective environmental performance of hydrogen from high-temperature electrolysis coupled with concentrated solar power," Renewable Energy, Elsevier, vol. 196(C), pages 1258-1268.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1258-1268
    DOI: 10.1016/j.renene.2022.07.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Purohit, Ishan & Purohit, Pallav, 2017. "Technical and economic potential of concentrating solar thermal power generation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 648-667.
    2. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    3. Antonio Valente & Diego Iribarren & Javier Dufour, 2020. "Validation of GreenH 2 armony ® as a Tool for the Computation of Harmonised Life-Cycle Indicators of Hydrogen," Energies, MDPI, vol. 13(7), pages 1-14, April.
    4. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    5. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    6. John J. Burkhardt & Garvin Heath & Elliot Cohen, 2012. "Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 93-109, April.
    7. Gemma Gasa & Anton Lopez-Roman & Cristina Prieto & Luisa F. Cabeza, 2021. "Life Cycle Assessment (LCA) of a Concentrating Solar Power (CSP) Plant in Tower Configuration with and without Thermal Energy Storage (TES)," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    8. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    9. San Miguel, G. & Corona, B., 2014. "Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: Analysis of environmental performance using LCA," Renewable Energy, Elsevier, vol. 66(C), pages 580-587.
    10. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Busch, P. & Kendall, A. & Lipman, T., 2023. "A systematic review of life cycle greenhouse gas intensity values for hydrogen production pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    3. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    2. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    3. Blanca Corona & Diego Ruiz & Guillermo San Miguel, 2016. "Life Cycle Assessment of a HYSOL Concentrated Solar Power Plant: Analyzing the Effect of Geographic Location," Energies, MDPI, vol. 9(6), pages 1-14, May.
    4. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    5. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    6. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    7. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    8. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    9. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
    10. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    11. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    12. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    13. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    14. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.
    15. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    16. Wang, Qi & Macián-Juan, Rafael, 2022. "Thermodynamic analysis of two novel very high temperature gas-cooled reactor-based hydrogen-electricity cogeneration systems using sulfur-iodine cycle and gas-steam combined cycle," Energy, Elsevier, vol. 256(C).
    17. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    18. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    19. Sanna Wickerts & Rickard Arvidsson & Anders Nordelöf & Magdalena Svanström & Patrik Johansson, 2024. "Prospective life cycle assessment of sodium‐ion batteries made from abundant elements," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 116-129, February.
    20. Gustavo Ezequiel Martinez & Roel Degens & Gabriela Espadas-Aldana & Daniele Costa & Giuseppe Cardellini, 2024. "Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices," Energies, MDPI, vol. 17(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1258-1268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.