IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp54-64.html
   My bibliography  Save this article

Hydrogen mobility from wind energy – A life cycle assessment focusing on the fuel supply

Author

Listed:
  • Burkhardt, Jörg
  • Patyk, Andreas
  • Tanguy, Philippe
  • Retzke, Carsten

Abstract

In the current debates on reducing greenhouse gas emissions in the mobility sector, hydrogen produced via water electrolysis from renewable electricity is commonly regarded to be a sustainable energy carrier with large potential for decarbonisation of the mobility sector. Directly produced at the refueling stations site, hydrogen greenhouse gas emissions are presently defined to be zero in e.g. the Directives of the European Union since emissions arising from the facilities construction are defined to be negligible. In order to check the validity of this assumption with respect to the latest technical developments in hydrogen supply, the present article aims to report the environmental performance of hydrogen being produced and compressed for mobility purposes. To this end, a state-of-the-art hydrogen refueling station (HRS) with an on-site alkaline electrolyser is assessed, which was built and operated in Berlin. Assuming electricity supply from wind energy generation, a life cycle assessment for the complete value chain was carried out where primary data for the build-up of electrolyser and HRS were obtained during decommissioning of the station.

Suggested Citation

  • Burkhardt, Jörg & Patyk, Andreas & Tanguy, Philippe & Retzke, Carsten, 2016. "Hydrogen mobility from wind energy – A life cycle assessment focusing on the fuel supply," Applied Energy, Elsevier, vol. 181(C), pages 54-64.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:54-64
    DOI: 10.1016/j.apenergy.2016.07.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Hermann-Josef & Baack, Christoph & Eickelkamp, Timo & Epe, Alexa & Lohmann, Jessica & Troy, Stefanie, 2011. "Life cycle assessment of the offshore wind farm alpha ventus," Energy, Elsevier, vol. 36(5), pages 2459-2464.
    2. Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
    3. Bartolozzi, I. & Rizzi, F. & Frey, M., 2013. "Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy," Applied Energy, Elsevier, vol. 101(C), pages 103-111.
    4. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    2. Coppitters, Diederik & Verleysen, Kevin & De Paepe, Ward & Contino, Francesco, 2022. "How can renewable hydrogen compete with diesel in public transport? Robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty," Applied Energy, Elsevier, vol. 312(C).
    3. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    4. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    5. Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
    6. Wenhui Zhao & Jibin Ma & Zhanyang Wang & Youting Li & Weishi Zhang, 2022. "Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    7. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    8. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    9. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    10. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Christina Wulf & Martin Kaltschmitt, 2018. "Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    12. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    13. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    14. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    15. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    16. Lee, Dong-Yeon & Elgowainy, Amgad & Dai, Qiang, 2018. "Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States," Applied Energy, Elsevier, vol. 217(C), pages 467-479.
    17. Chaube, Anshuman & Chapman, Andrew & Minami, Akari & Stubbins, James & Huff, Kathryn D., 2021. "The role of current and emerging technologies in meeting Japan’s mid- to long-term carbon reduction goals," Applied Energy, Elsevier, vol. 304(C).
    18. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    19. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    20. Jan Christian Koj & Christina Wulf & Andrea Schreiber & Petra Zapp, 2017. "Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis," Energies, MDPI, vol. 10(7), pages 1-15, June.
    21. Liemberger, Werner & Halmschlager, Daniel & Miltner, Martin & Harasek, Michael, 2019. "Efficient extraction of hydrogen transported as co-stream in the natural gas grid – The importance of process design," Applied Energy, Elsevier, vol. 233, pages 747-763.
    22. Yáñez, María & Ortiz, Alfredo & Brunaud, Braulio & Grossmann, Ignacio E. & Ortiz, Inmaculada, 2018. "Contribution of upcycling surplus hydrogen to design a sustainable supply chain: The case study of Northern Spain," Applied Energy, Elsevier, vol. 231(C), pages 777-787.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    2. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    3. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    4. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    6. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    7. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    8. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    9. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    10. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    11. Małgorzata Mrozik & Agnieszka Merkisz-Guranowska, 2020. "Environmental Assessment of the Vehicle Operation Process," Energies, MDPI, vol. 14(1), pages 1-15, December.
    12. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    13. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    14. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    15. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    16. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    17. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    18. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    19. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    20. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:54-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.