IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015742.html
   My bibliography  Save this article

Thermodynamic analysis of two novel very high temperature gas-cooled reactor-based hydrogen-electricity cogeneration systems using sulfur-iodine cycle and gas-steam combined cycle

Author

Listed:
  • Wang, Qi
  • Macián-Juan, Rafael

Abstract

In this paper, two novel system layouts are proposed to improve the thermodynamic performance of the conventional very high temperature gas-cooled reactor (VHTR)-based hydrogen-electricity cogeneration system using sulfur-iodine (S–I) cycle and gas-steam combined cycle (GSCC). The heat and electricity consumption data of the S–I cycle are obtained from our previous Aspen Plus simulation results, and the thermodynamic model of the entire hydrogen-electricity cogeneration system is established using energy and exergy analysis methods. The performance of the system under benchmark conditions is analyzed, and the effects of several key operating parameters on system performance are investigated. The results show that with these two new system layouts, the thermal efficiency and exergy efficiency of the conventional system are improved by 8.56%–10.27% and 9.01%–10.82%, respectively. The largest exergy loss of the system occurs in the VHTR, and the exergy efficiency of the S–I cycle is very low, only about 50.8%. Therefore, when the hydrogen production load is large, it is very important to optimize the process flow and operating parameters of the S–I cycle. Besides this, it is found that the S–I cycle-based nuclear hydrogen production efficiencies are lower than the GSCC-based nuclear power generation efficiencies.

Suggested Citation

  • Wang, Qi & Macián-Juan, Rafael, 2022. "Thermodynamic analysis of two novel very high temperature gas-cooled reactor-based hydrogen-electricity cogeneration systems using sulfur-iodine cycle and gas-steam combined cycle," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015742
    DOI: 10.1016/j.energy.2022.124671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    2. Ni, Hang & Peng, Wei & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Wang, Jie, 2022. "Thermodynamic analysis of a novel hydrogen–electricity–heat polygeneration system based on a very high-temperature gas-cooled reactor," Energy, Elsevier, vol. 249(C).
    3. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Hang & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Peng, Wei, 2024. "Research on two novel hydrogen-electricity-heat polygeneration systems using very-high-temperature gas-cooled reactor and hybrid-sulfur cycle," Energy, Elsevier, vol. 290(C).
    2. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Hang & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Peng, Wei, 2024. "Research on two novel hydrogen-electricity-heat polygeneration systems using very-high-temperature gas-cooled reactor and hybrid-sulfur cycle," Energy, Elsevier, vol. 290(C).
    2. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).
    3. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    4. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    5. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    6. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    8. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    9. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    10. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    11. Tymoteusz Miller & Irmina Durlik & Ewelina Kostecka & Polina Kozlovska & Andrzej Jakubowski & Adrianna Łobodzińska, 2024. "Waste Heat Utilization in Marine Energy Systems for Enhanced Efficiency," Energies, MDPI, vol. 17(22), pages 1-29, November.
    12. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    13. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Mehrshad Kolahchian Tabrizi & Jacopo Famiglietti & Davide Bonalumi & Stefano Campanari, 2023. "The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology," Energies, MDPI, vol. 16(13), pages 1-25, July.
    15. Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
    16. White, Lee V. & Fazeli, Reza & Cheng, Wenting & Aisbett, Emma & Beck, Fiona J. & Baldwin, Kenneth G.H. & Howarth, Penelope & O’Neill, Lily, 2021. "Towards emissions certification systems for international trade in hydrogen: The policy challenge of defining boundaries for emissions accounting," Energy, Elsevier, vol. 215(PA).
    17. Nascimento da Silva, Gabriela & Rochedo, Pedro R.R. & Szklo, Alexandre, 2022. "Renewable hydrogen production to deal with wind power surpluses and mitigate carbon dioxide emissions from oil refineries," Applied Energy, Elsevier, vol. 311(C).
    18. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Ni, Hang & Peng, Wei & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Wang, Jie, 2022. "Thermodynamic analysis of a novel hydrogen–electricity–heat polygeneration system based on a very high-temperature gas-cooled reactor," Energy, Elsevier, vol. 249(C).
    20. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2023. "Waste heat recovery potential in the thermochemical copper–chlorine cycle for hydrogen production: Development of an efficient and cost-effective heat exchanger network," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.