IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp326-339.html
   My bibliography  Save this article

Integration of first- and second-generation ethanol production: Evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae

Author

Listed:
  • Martínez-Jimenez, F.D.
  • Pereira, I.O.
  • Ribeiro, M.P.A.
  • Sargo, C.R.
  • dos Santos, A.A.
  • Zanella, E.
  • Stambuk, B.U.
  • Ienczak, J.L.
  • Morais, E.R.
  • Costa, A.C.

Abstract

The use of hydrolysates of lignocellulosic materials and microbial platforms present themselves as viable alternatives to the current system energy. The metabolization of the different carbohydrates present in the hydrolysates by yeasts is a process bottleneck. Genetically modified yeasts can ferment different carbohydrates. Furthermore, mathematical modelling helps to understand the dynamics and interactions during the process and predicts other conditions. The performance of the recombinant yeast Saccharomyces cerevisiae was evaluated for co-fermentation in different carbohydrates proportions (C12 – C5, 30.67 ± 0.71–70.17 ± 2.64%) and initial cell densities (0.28 ± 0.07, 10.95 ± 0.250 and 30.25 ± 0.25 g·L−1) using an unstructured – unsegregated kinetic model aiming the integration of first-and-second generation ethanol production. The method to obtain confidence region, the parameter's correlation, and the convergence of the parameters followed a pipeline previously developed by our researcher group. The mathematical models described the fermentations, and μGlu,max, μFru,max, πGlu,max, πXyl,max, ρXyl,max and ψXyl,max were the parameters with the slightest variation during the convergence process. Also, it was identified that the yeast consumed glucose and fructose simultaneously to form cell, however μGlu,max was higher relative to μFru,max in all cases (0.1909, 0.0341, 0.1815 h−1 for μGlu,max, and 1.00E-5, 2.86E-05, 2.44E-05 h−1 for μFru,max). On the other hand, πGlu,max and πFru,max were higher relative to πXyl,max.

Suggested Citation

  • Martínez-Jimenez, F.D. & Pereira, I.O. & Ribeiro, M.P.A. & Sargo, C.R. & dos Santos, A.A. & Zanella, E. & Stambuk, B.U. & Ienczak, J.L. & Morais, E.R. & Costa, A.C., 2022. "Integration of first- and second-generation ethanol production: Evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 192(C), pages 326-339.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:326-339
    DOI: 10.1016/j.renene.2022.04.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasconcelos, Marcelo Holanda & Mendes, Fernanda Machado & Ramos, Lucas & Dias, Marina Oliveira S. & Bonomi, Antonio & Jesus, Charles Dayan F. & Watanabe, Marcos Djun B. & Junqueira, Tassia Lopes & Mil, 2020. "Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment," Energy, Elsevier, vol. 199(C).
    2. Dussán, Kelly J. & Silva, Débora D.V. & Perez, Victor H. & da Silva, Silvio S., 2016. "Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast," Renewable Energy, Elsevier, vol. 87(P1), pages 703-710.
    3. Neitzel, Thiago & Lima, Cleilton Santos & Biazi, Luiz Eduardo & Collograi, Karen Cristina & Carvalho da Costa, Aline & Vieira dos Santos, Leandro & Ienczak, Jaciane Lutz, 2020. "Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum," Renewable Energy, Elsevier, vol. 160(C), pages 1206-1216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    2. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Neitzel, Thiago & Lima, Cleilton Santos & Hafemann, Eduardo & Paixão, Douglas Antonio Alvaredo & Junior, Joaquim Martins & Persinoti, Gabriela Felix & dos Santos, Leandro Vieira & Ienczak, Jaciane Lut, 2022. "RNA-seq based transcriptomic analysis of the non-conventional yeast Spathaspora passalidarum during Melle-boinot cell recycle in xylose-glucose mixtures," Renewable Energy, Elsevier, vol. 201(P1), pages 486-498.
    4. Pavão, Leandro V. & Santos, Lucas F. & Oliveira, Cássia M. & Cruz, Antonio J.G. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2023. "Flexible heat integration system in first-/second-generation ethanol production via screening pinch-based method and multiperiod model," Energy, Elsevier, vol. 271(C).
    5. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    6. Mariana S. T. Amândio & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2021. "Cellulosic Bioethanol from Industrial Eucalyptus globulus Bark Residues Using Kraft Pulping as a Pretreatment," Energies, MDPI, vol. 14(8), pages 1-18, April.
    7. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    8. He, Boyang & Hao, Bo & Yu, Haizhong & Tu, Fen & Wei, Xiaoyang & Xiong, Ke & Zeng, Yajun & Zeng, Hu & Liu, Peng & Tu, Yuanyuan & Wang, Yanting & Kang, Heng & Peng, Liangcai & Xia, Tao, 2022. "Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose ," Renewable Energy, Elsevier, vol. 186(C), pages 341-349.
    9. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    10. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    11. Rojas-Chamorro, José A. & Romero, Inmaculada & López-Linares, Juan C. & Castro, Eulogio, 2020. "Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment," Renewable Energy, Elsevier, vol. 148(C), pages 81-90.
    12. Antunes, F.A.F. & Chandel, A.K. & Brumano, L.P. & Terán Hilares, R. & Peres, G.F.D. & Ayabe, L.E.S. & Sorato, V.S. & Santos, J.R. & Santos, J.C. & Da Silva, S.S., 2018. "A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor," Renewable Energy, Elsevier, vol. 124(C), pages 189-196.
    13. Battisti, Rodrigo & Galeazzi, Andrea & Prifti, Kristiano & Manenti, Flavio & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2021. "Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery," Applied Energy, Elsevier, vol. 297(C).
    14. Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
    15. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    16. Xu, Chaozhong & Liu, Xu & Ding, Chenrong & Zhou, Xin & Xu, Yong & Gu, Xiaoli, 2023. "Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method," Renewable Energy, Elsevier, vol. 212(C), pages 430-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:326-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.