IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip1p703-710.html
   My bibliography  Save this article

Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast

Author

Listed:
  • Dussán, Kelly J.
  • Silva, Débora D.V.
  • Perez, Victor H.
  • da Silva, Silvio S.

Abstract

Ethanol production from biomass-derived pentose sugar challenges the development of low cost technologies to produce 2G ethanol. Although some studies describe ethanol production from yeast, few reports describe its manufacturing from hemicelluloses sugars in stirred-tank fermenter under controlled conditions. Experimental assays were performed to evaluate the influence of aeration, agitation rate and initial pH on ethanol production using sugarcane bagasse hemicelluloses hydrolysate by Scheffersomyces stipitis NRRL Y-7124 and Scheffersomyces shehatae UFMG HM 52.2. Ethanol production from these two yeasts was favored by initial pH increase and agitation rate decrease. The maximum fermentative yield was attained by S. stipitis and S. shehatae yeasts at 100 RPM, initial pH 6.50 and under oxygen limited conditions (0.1 and 3.2 h−1). Yield, ethanol productivity and process efficiency in S. shehatae and S. stipitis were 0.42 and 0.16 g g−1, 0.25 and 0.1 g L−1 h−1 and 85 and 31%, respectively. It showed that S. shehatae presented the best ethanol production performance. The current study is the first report describing the influence of these variables on hemicelluloses hydrolysates under controlled conditions. It highlights these xylose-fermenting yeasts potential to produce ethanol from biomass.

Suggested Citation

  • Dussán, Kelly J. & Silva, Débora D.V. & Perez, Victor H. & da Silva, Silvio S., 2016. "Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast," Renewable Energy, Elsevier, vol. 87(P1), pages 703-710.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:703-710
    DOI: 10.1016/j.renene.2015.10.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.10.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    2. Silva, João Paulo A. & Mussatto, Solange I. & Roberto, Inês C. & Teixeira, José A., 2012. "Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis," Renewable Energy, Elsevier, vol. 37(1), pages 259-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antunes, F.A.F. & Chandel, A.K. & Brumano, L.P. & Terán Hilares, R. & Peres, G.F.D. & Ayabe, L.E.S. & Sorato, V.S. & Santos, J.R. & Santos, J.C. & Da Silva, S.S., 2018. "A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor," Renewable Energy, Elsevier, vol. 124(C), pages 189-196.
    2. He, Boyang & Hao, Bo & Yu, Haizhong & Tu, Fen & Wei, Xiaoyang & Xiong, Ke & Zeng, Yajun & Zeng, Hu & Liu, Peng & Tu, Yuanyuan & Wang, Yanting & Kang, Heng & Peng, Liangcai & Xia, Tao, 2022. "Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose ," Renewable Energy, Elsevier, vol. 186(C), pages 341-349.
    3. Martínez-Jimenez, F.D. & Pereira, I.O. & Ribeiro, M.P.A. & Sargo, C.R. & dos Santos, A.A. & Zanella, E. & Stambuk, B.U. & Ienczak, J.L. & Morais, E.R. & Costa, A.C., 2022. "Integration of first- and second-generation ethanol production: Evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 192(C), pages 326-339.
    4. Xu, Chaozhong & Liu, Xu & Ding, Chenrong & Zhou, Xin & Xu, Yong & Gu, Xiaoli, 2023. "Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method," Renewable Energy, Elsevier, vol. 212(C), pages 430-442.
    5. Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
    6. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    7. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    8. Rojas-Chamorro, José A. & Romero, Inmaculada & López-Linares, Juan C. & Castro, Eulogio, 2020. "Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment," Renewable Energy, Elsevier, vol. 148(C), pages 81-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    3. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    5. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    6. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    7. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    8. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    9. Mertzanis, Charilaos, 2018. "Institutions, development and energy constraints," Energy, Elsevier, vol. 142(C), pages 962-982.
    10. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.
    11. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    12. Guilherme, Ederson Paulo Xavier & Zanphorlin, Leticia Maria & Sousa, Amanda Silva & Miyamoto, Renan Yuji & Bruziquesi, Carlos Giovani Oliveira & Mesquita, Bruna Mara Aparecida de Carvalho & Santos, Se, 2022. "Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Sacchar," Renewable Energy, Elsevier, vol. 182(C), pages 274-284.
    13. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    14. Singh, N.B. & Kumar, Ashwani & Rai, Sarita, 2014. "Potential production of bioenergy from biomass in an Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 65-78.
    15. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    16. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2016. "The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 155-172.
    17. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    18. Pandey, Ajay Kumar & Edgard, Gnansounou & Negi, Sangeeta, 2016. "Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 51-56.
    19. Ko, Chun-Han & Wang, Ya-Nang & Chang, Fang-Chih & Chen, Jia-Jie & Chen, Wen-Hua & Hwang, Wen-Song, 2012. "Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan," Energy, Elsevier, vol. 44(1), pages 329-334.
    20. Sumitkumar Joshi & Pradipkumar Hadiya & Manan Shah & Anirbid Sircar, 2019. "Techno-economical and Experimental Analysis of Biodiesel Production from Used Cooking Oil," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-6, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:703-710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.