IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp1206-1216.html
   My bibliography  Save this article

Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum

Author

Listed:
  • Neitzel, Thiago
  • Lima, Cleilton Santos
  • Biazi, Luiz Eduardo
  • Collograi, Karen Cristina
  • Carvalho da Costa, Aline
  • Vieira dos Santos, Leandro
  • Ienczak, Jaciane Lutz

Abstract

This study aimed to elucidate the impact of temperature on the first-generation fermentation process (Melle-Boinot) applied to second-generation ethanol production by the native xylose-fermenting yeast Spathaspora passalidarum. The Melle-Boinot process consists of fed-batch fermentations with cell recycling and was performed in this study under three conditions: fixed temperature of 30 °C, temperature decay of 1 °C per cycle and fixed temperature of 27 °C. The physiological adaptation of S. passalidarum was observed throughout the recycles under all conditions regardless of the temperature applied, as confirmed by the improvement in the kinetic and fermentation parameters. Regarding the fixed 30 °C condition, the best condition of this study for industrial application, the ethanol yield, ethanol volumetric productivity and ethanol titer increased 31.77, 33.58 and 33.55%, respectively, from the first to last fermentation cycle. The Melle-Boinot fermentation process was shown to be a worthy strategy for second-generation ethanol production by native yeasts without the need for genetic modifications.

Suggested Citation

  • Neitzel, Thiago & Lima, Cleilton Santos & Biazi, Luiz Eduardo & Collograi, Karen Cristina & Carvalho da Costa, Aline & Vieira dos Santos, Leandro & Ienczak, Jaciane Lutz, 2020. "Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum," Renewable Energy, Elsevier, vol. 160(C), pages 1206-1216.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1206-1216
    DOI: 10.1016/j.renene.2020.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, João Paulo A. & Mussatto, Solange I. & Roberto, Inês C. & Teixeira, José A., 2012. "Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis," Renewable Energy, Elsevier, vol. 37(1), pages 259-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Jimenez, F.D. & Pereira, I.O. & Ribeiro, M.P.A. & Sargo, C.R. & dos Santos, A.A. & Zanella, E. & Stambuk, B.U. & Ienczak, J.L. & Morais, E.R. & Costa, A.C., 2022. "Integration of first- and second-generation ethanol production: Evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 192(C), pages 326-339.
    2. Mariana S. T. Amândio & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2021. "Cellulosic Bioethanol from Industrial Eucalyptus globulus Bark Residues Using Kraft Pulping as a Pretreatment," Energies, MDPI, vol. 14(8), pages 1-18, April.
    3. Neitzel, Thiago & Lima, Cleilton Santos & Hafemann, Eduardo & Paixão, Douglas Antonio Alvaredo & Junior, Joaquim Martins & Persinoti, Gabriela Felix & dos Santos, Leandro Vieira & Ienczak, Jaciane Lut, 2022. "RNA-seq based transcriptomic analysis of the non-conventional yeast Spathaspora passalidarum during Melle-boinot cell recycle in xylose-glucose mixtures," Renewable Energy, Elsevier, vol. 201(P1), pages 486-498.
    4. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    2. Arora, Richa & Behera, Shuvashish & Sharma, Nilesh Kumar & Kumar, Sachin, 2017. "Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates," Renewable Energy, Elsevier, vol. 109(C), pages 406-421.
    3. Dussán, Kelly J. & Silva, Débora D.V. & Perez, Victor H. & da Silva, Silvio S., 2016. "Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast," Renewable Energy, Elsevier, vol. 87(P1), pages 703-710.
    4. Zhao, Chen & Zou, Zongsheng & Li, Jisheng & Jia, Honglei & Liesche, Johannes & Chen, Shaolin & Fang, Hao, 2018. "Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production," Renewable Energy, Elsevier, vol. 118(C), pages 14-24.
    5. Xu, Chaozhong & Liu, Xu & Ding, Chenrong & Zhou, Xin & Xu, Yong & Gu, Xiaoli, 2023. "Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method," Renewable Energy, Elsevier, vol. 212(C), pages 430-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1206-1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.