IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2185-d535845.html
   My bibliography  Save this article

Cellulosic Bioethanol from Industrial Eucalyptus globulus Bark Residues Using Kraft Pulping as a Pretreatment

Author

Listed:
  • Mariana S. T. Amândio

    (Chemistry Department, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal)

  • Jorge M. S. Rocha

    (CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal)

  • Luísa S. Serafim

    (Chemistry Department, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Ana M. R. B. Xavier

    (Chemistry Department, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

Abstract

The pulp and paper industry faces an emerging challenge for valorising wastes and side-streams generated according to the biorefinery concept. Eucalyptus globulus bark, an abundant industrial residue in the Portuguese pulp and paper sector, has a high potential to be converted into biobased products instead of being burned. This work aimed to evaluate the ethanol production from E. globulus bark previously submitted to kraft pulping through separate hydrolysis and fermentation (SHF) configuration. Fed-batch enzymatic hydrolysis provided a concentrated hydrolysate with 161.6 g·L −1 of cellulosic sugars. S. cerevisiae and Ethanol Red ® strains demonstrated a very good fermentation performance, despite a negligible xylose consumption. S. passalidarum , a yeast known for its capability to consume pentoses, was studied in a simultaneous co-culture with Ethanol Red ® . However, bioethanol production was not improved. The best fermentation performance was achieved by Ethanol Red ® , which provided a maximum ethanol concentration near 50 g·L −1 and fermentation efficiency of 80%. Concluding, kraft pulp from E. globulus bark showed a high potential to be converted into cellulosic bioethanol, being susceptible to implementing an integrated biorefinery on the pulp and paper industrial plants.

Suggested Citation

  • Mariana S. T. Amândio & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2021. "Cellulosic Bioethanol from Industrial Eucalyptus globulus Bark Residues Using Kraft Pulping as a Pretreatment," Energies, MDPI, vol. 14(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2185-:d:535845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    2. Feng, Shanghuan & Cheng, Shuna & Yuan, Zhongshun & Leitch, Mathew & Xu, Chunbao (Charles), 2013. "Valorization of bark for chemicals and materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 560-578.
    3. Frankó, Balázs & Galbe, Mats & Wallberg, Ola, 2016. "Bioethanol production from forestry residues: A comparative techno-economic analysis," Applied Energy, Elsevier, vol. 184(C), pages 727-736.
    4. Ko, Chun-Han & Wang, Ya-Nang & Chang, Fang-Chih & Chen, Jia-Jie & Chen, Wen-Hua & Hwang, Wen-Song, 2012. "Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan," Energy, Elsevier, vol. 44(1), pages 329-334.
    5. Neitzel, Thiago & Lima, Cleilton Santos & Biazi, Luiz Eduardo & Collograi, Karen Cristina & Carvalho da Costa, Aline & Vieira dos Santos, Leandro & Ienczak, Jaciane Lutz, 2020. "Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum," Renewable Energy, Elsevier, vol. 160(C), pages 1206-1216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    2. Ana P. M. Tavares & Matthew J. A. Gonçalves & Teresa Brás & Gaetano R. Pesce & Ana M. R. B. Xavier & Maria C. Fernandes, 2022. "Cardoon Hydrolysate Detoxification by Activated Carbon or Membranes System for Bioethanol Production," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
    2. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    3. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    4. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Gunarathne, Duleeka Sandamali & Mueller, Andreas & Fleck, Sabine & Kolb, Thomas & Chmielewski, Jan Karol & Yang, Weihong & Blasiak, Wlodzimierz, 2014. "Gasification characteristics of steam exploded biomass in an updraft pilot scale gasifier," Energy, Elsevier, vol. 71(C), pages 496-506.
    6. Wei, Rufei & Zhang, Lingling & Cang, Daqiang & Li, Jiaxin & Li, Xianwei & Xu, Chunbao Charles, 2017. "Current status and potential of biomass utilization in ferrous metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 511-524.
    7. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    8. Fornell, Rickard & Berntsson, Thore & Åsblad, Anders, 2013. "Techno-economic analysis of a kraft pulp-mill-based biorefinery producing both ethanol and dimethyl ether," Energy, Elsevier, vol. 50(C), pages 83-92.
    9. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    10. Ge, Yuntian & Li, Lin, 2018. "System-level energy consumption modeling and optimization for cellulosic biofuel production," Applied Energy, Elsevier, vol. 226(C), pages 935-946.
    11. Kuo, Yen-Ting & Chen, Ju-Shiou & Yang, Tzu-Yueh & Wan, Hou-Peng, 2018. "Technical and Economic approach of bioethanol production from nanofiltration of biomass chemical hydrolysis solutions," Applied Energy, Elsevier, vol. 215(C), pages 426-436.
    12. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    13. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Martínez-Jimenez, F.D. & Pereira, I.O. & Ribeiro, M.P.A. & Sargo, C.R. & dos Santos, A.A. & Zanella, E. & Stambuk, B.U. & Ienczak, J.L. & Morais, E.R. & Costa, A.C., 2022. "Integration of first- and second-generation ethanol production: Evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 192(C), pages 326-339.
    15. Sylvia Haus & Lovisa Björnsson & Pål Börjesson, 2020. "Lignocellulosic Ethanol in a Greenhouse Gas Emission Reduction Obligation System—A Case Study of Swedish Sawdust Based-Ethanol Production," Energies, MDPI, vol. 13(5), pages 1-15, February.
    16. Mohamed Hashem & Saad A. Alamri & Tahani A. Y. Asseri & Yasser S. Mostafa & Gerasimos Lyberatos & Ioanna Ntaikou, 2021. "On the Optimization of Fermentation Conditions for Enhanced Bioethanol Yields from Starchy Biowaste via Yeast Co-Cultures," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    17. Neitzel, Thiago & Lima, Cleilton Santos & Hafemann, Eduardo & Paixão, Douglas Antonio Alvaredo & Junior, Joaquim Martins & Persinoti, Gabriela Felix & dos Santos, Leandro Vieira & Ienczak, Jaciane Lut, 2022. "RNA-seq based transcriptomic analysis of the non-conventional yeast Spathaspora passalidarum during Melle-boinot cell recycle in xylose-glucose mixtures," Renewable Energy, Elsevier, vol. 201(P1), pages 486-498.
    18. Yang, Bing-Yuan & Cheng, Ming-Hsun & Ko, Chun-Han & Wang, Ya-Nan & Chen, Wen-Hua & Hwang, Wen-Song & Yang, Yuan-Po & Chen, Hsin-Tai & Chang, Fang-Chih, 2014. "Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum)," Energy, Elsevier, vol. 76(C), pages 59-65.
    19. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
    20. Aui, A. & Wang, Y. & Mba-Wright, M., 2021. "Evaluating the economic feasibility of cellulosic ethanol: A meta-analysis of techno-economic analysis studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2185-:d:535845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.