IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6137-d643841.html
   My bibliography  Save this article

Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review

Author

Listed:
  • Tamás Mizik

    (Agribusiness Department, Corvinus University of Budapest, 1093 Budapest, Hungary)

Abstract

Meeting the increasing global energy demand in a sustainable way is a major challenge for humanity. One of the solutions in the transportation sector is ethanol, which is currently the only economically viable direct fuel substitute. In addition to the first-generation technology, which provides the vast majority of production, better results can be continuously realized by using advanced technologies. This study aims to investigate the economic aspects and sustainability issues of ethanol production with a systematic literature review. During the selection process, 64 studies from a total of 16,141 identified articles were analyzed in-depth. There is a consensus that first-generation production methods cannot result in a long-term solution. However, advanced technologies are currently immature, and ethanol production is more expensive with them. The use of wastes/residues and coproducts can improve both the economic outlook and sustainability of the advanced technologies. Overall, the newer generations of technological advancements are constantly improving the environmental performance, whereas the economic performance is deteriorating. Considering low oil prices (0.36 USD/L), none of the ethanol production methods can be competitive on a purely cost basis. This increases the importance of coproducts (further processing and more valuable coproducts). Regarding sustainability, a complex analysis is essential, which must cover at least the environmental, social, and economic aspects. At the methodology level, a complex life cycle analysis seems to be the best tool, as it can take into account these relevant aspects (environmental, economic, and social).

Suggested Citation

  • Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6137-:d:643841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    2. Vasconcelos, Marcelo Holanda & Mendes, Fernanda Machado & Ramos, Lucas & Dias, Marina Oliveira S. & Bonomi, Antonio & Jesus, Charles Dayan F. & Watanabe, Marcos Djun B. & Junqueira, Tassia Lopes & Mil, 2020. "Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment," Energy, Elsevier, vol. 199(C).
    3. Carpio, Lucio Guido Tapia & Simone de Souza, Fábio, 2017. "Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions," Renewable Energy, Elsevier, vol. 111(C), pages 771-780.
    4. Ogbonna, Christiana N. & Nwoba, Emeka G., 2021. "Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Tamás Mizik, 2020. "Impacts of International Commodity Trade on Conventional Biofuels Production," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    6. Kaenchan, Piyanon & Puttanapong, Nattapong & Bowonthumrongchai, Thongchart & Limskul, Kitti & Gheewala, Shabbir H., 2019. "Macroeconomic modeling for assessing sustainability of bioethanol production in Thailand," Energy Policy, Elsevier, vol. 127(C), pages 361-373.
    7. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Kristianto, Yohanes & Zhu, Liandong, 2017. "Techno-economic optimization of ethanol synthesis from rice-straw supply chains," Energy, Elsevier, vol. 141(C), pages 2164-2176.
    9. Xiaolin Yang & Meng Li & Huihui Liu & Lantian Ren & Guanghui Xie, 2018. "Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    10. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    11. Kesharwani, Rajkamal & Sun, Zeyi & Dagli, Cihan & Xiong, Haoyi, 2019. "Moving second generation biofuel manufacturing forward: Investigating economic viability and environmental sustainability considering two strategies for supply chain restructuring," Applied Energy, Elsevier, vol. 242(C), pages 1467-1496.
    12. Li, Yu & Kesharwani, Rajkamal & Sun, Zeyi & Qin, Ruwen & Dagli, Cihan & Zhang, Meng & Wang, Donghai, 2020. "Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology," Applied Energy, Elsevier, vol. 259(C).
    13. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    14. Samuel O’Brien & Jacek A. Koziel & Chumki Banik & Andrzej Białowiec, 2020. "Synergy of Thermochemical Treatment of Dried Distillers Grains with Solubles with Bioethanol Production for Increased Sustainability and Profitability," Energies, MDPI, vol. 13(17), pages 1-14, September.
    15. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    16. Berazneva, Julia & Woolf, Dominic & Lee, David R., 2021. "Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: The role of feedstock provision in economic viability," Energy Economics, Elsevier, vol. 93(C).
    17. Chang, Wei-Ru & Hwang, Jenn-Jiang & Wu, Wei, 2017. "Environmental impact and sustainability study on biofuels for transportation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 277-288.
    18. Duarte, Alexandra & Uribe, Juan Carlos & Sarache, William & Calderón, Andrés, 2021. "Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues," Energy, Elsevier, vol. 216(C).
    19. Sharma, Ashish & Strezov, Vladimir, 2017. "Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies," Energy, Elsevier, vol. 133(C), pages 1132-1141.
    20. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    21. Maria J Bastante-Ceca & Jose L Fuentes-Bargues & Levente Hufnagel & Florin Constantin Mihai & Corneliu Iatu, 2020. "Sustainability Assessment at the 21st century," Post-Print hal-02561089, HAL.
    22. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    23. Elias, Andrew Milli & Longati, Andreza Aparecida & de Campos Giordano, Roberto & Furlan, Felipe Fernando, 2021. "Retro-techno-economic-environmental analysis improves the operation efficiency of 1G-2G bioethanol and bioelectricity facilities," Applied Energy, Elsevier, vol. 282(PA).
    24. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    25. Tomas Ekvall, 2020. "Attributional and Consequential Life Cycle Assessment," Chapters, in: Maria Jose Bastante-Ceca & Jose Luis Fuentes-Bargues & Levente Hufnagel & Florin-Constantin Mihai & (ed.), Sustainability Assessment at the 21st century, IntechOpen.
    26. Maria Jose Bastante-Ceca & Jose Luis Fuentes-Bargues & Levente Hufnagel & Florin-Constantin Mihai & (ed.), 2020. "Sustainability Assessment at the 21st century," Books, IntechOpen, number 6096, January-J.
    27. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    28. Cheng, Guishi & Zhao, Ying & Pan, Shijiu & Wang, Xiaoqiang & Dong, Changqing, 2020. "A comparative life cycle analysis of wheat straw utilization modes in China," Energy, Elsevier, vol. 194(C).
    29. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.
    30. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    31. Zanxin Wang & Fangyuan Zheng & Shiya Xue, 2019. "The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    32. Hassan, Shady S. & Williams, Gwilym A. & Jaiswal, Amit K., 2019. "Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 590-599.
    33. Eckert, C.T. & Frigo, E.P. & Albrecht, L.P. & Albrecht, A.J.P. & Christ, D. & Santos, W.G. & Berkembrock, E. & Egewarth, V.A., 2018. "Maize ethanol production in Brazil: Characteristics and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3907-3912.
    34. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    2. Leandro C. de Morais & Amanda A. Maia & Pedro R. Resende & André H. Rosa & Leonel J. R. Nunes, 2022. "Thermochemical Conversion of Sugarcane Bagasse: A Comprehensive Analysis of Ignition and Burnout Temperatures," Clean Technol., MDPI, vol. 4(4), pages 1-11, November.
    3. Piradee Jusakulvijit & Alberto Bezama & Daniela Thrän, 2022. "An Integrated Assessment of GIS-MCA with Logistics Analysis for an Assessment of a Potential Decentralized Bioethanol Production System Using Distributed Agricultural Residues in Thailand," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    4. Małgorzata Hawrot-Paw & Patryk Ratomski & Adam Koniuszy & Wojciech Golimowski & Mirosława Teleszko & Anna Grygier, 2021. "Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production," Energies, MDPI, vol. 14(21), pages 1-14, November.
    5. Ardit Sertolli & Zoltán Gabnai & Péter Lengyel & Attila Bai, 2022. "Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    6. K. A. Viraj Miyuranga & Udara S. P. R. Arachchige & Randika A. Jayasinghe & Gamunu Samarakoon, 2022. "Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil," Energies, MDPI, vol. 15(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    2. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    4. Mieczysław Adamowicz & Magdalena Zwolińska-Ligaj, 2020. "The “Smart Village” as a Way to Achieve Sustainable Development in Rural Areas of Poland," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    5. Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    7. Adriana Gómez-Cabrera & Amalia Sanz-Benlloch & Laura Montalban-Domingo & Jose Luis Ponz-Tienda & Eugenio Pellicer, 2020. "Identification of Factors Affecting the Performance of Rural Road Projects in Colombia," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    9. Paola Sakai & Stavros Afionis & Nicola Favretto & Lindsay C. Stringer & Caroline Ward & Marco Sakai & Pedro Henrique Weirich Neto & Carlos Hugo Rocha & Jaime Alberti Gomes & Nátali Maidl de Souza & No, 2020. "Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    10. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    11. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    12. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    13. Mateus Torres Nazari & Janaína Mazutti & Luana Girardi Basso & Luciane Maria Colla & Luciana Brandli, 2021. "Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11139-11156, August.
    14. Pavão, Leandro V. & Santos, Lucas F. & Oliveira, Cássia M. & Cruz, Antonio J.G. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2023. "Flexible heat integration system in first-/second-generation ethanol production via screening pinch-based method and multiperiod model," Energy, Elsevier, vol. 271(C).
    15. Tamás Mizik & Lajos Nagy & Zoltán Gabnai & Attila Bai, 2020. "The Major Driving Forces of the EU and US Ethanol Markets with Special Attention Paid to the COVID-19 Pandemic," Energies, MDPI, vol. 13(21), pages 1-22, October.
    16. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2021. "A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products," IJERPH, MDPI, vol. 18(11), pages 1-27, June.
    17. Pamela Del Rosario & Elisabetta Palumbo & Marzia Traverso, 2021. "Environmental Product Declarations as Data Source for the Environmental Assessment of Buildings in the Context of Level(s) and DGNB: How Feasible Is Their Adoption?," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    18. Hongshen Li & Hongrui Liu & Shizhong Li, 2021. "Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation," Energies, MDPI, vol. 14(19), pages 1-14, October.
    19. Ana-Maria Opria & Lucian Roșu & Corneliu Iațu, 2021. "LEADER Program—An Inclusive or Selective Instrument for the Development of Rural Space in Romania?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    20. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6137-:d:643841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.